Minimizing Quarrying Costs by Correct Shotrock Fragmentation and In-pit Crushing

Oct. 2006, Rev A Jarmo Eloranta

Contents

- Quarry process in general
- Comparison of different shotrock fragmentations
- Comparison of different crushing methods
- Conclusions
- Enclosures

Challenge in Quarry Development

Quarry Process Stationary Crushers

Quarry Process Mobile Crusher(s)

Example of Quarry Cost distribution

Approach Based on Two Phases

- Comparison of different shotrock fragmentations, including:
 - drilling and blasting
 - boulder handling
 - loading
 - hauling
 - crushing (traditional stationary)
- Comparison of different crushing methods, including:
 - stationary
 - inpit, semimobile
 - inpit, fully mobile

Cost Effective Quarry Practise

Optimum crushing

Comparison of Different Shotrock Fragmentations

Starting Point: Stationary Three-stage Plant with a Capacity of 1600t/h. Final Product 0-20mm

MAIN DATA	Case 1	Case 2	Case 3	Case 4	Case 5
Drillig:					
Nr.of units	3	4	5	6	8
Drilling pattern (m2)	9	6,4	5,8	4,5	3,3
Blasting:					
Specific charge (kg/m3)	0,53	0,76	0,9	1,15	1,56
K50 (mm), L	410	290	250	200	150
Number of operators	18-22				
Loading by excavators					
Bucket size (m3)	12				
Nr.of units	2-7 depending on blast configuration (or bigger buckets)				
Hauling by trucks:					
Pay-load (t)	50				
Distance (km)	2				
Nr.of units	8-10 depending on blast configuration				
Crushing:					
Primary crusher type	Nordberg C160 jaw				
Nr.of primary units	2				
Nr.of sec.&tertary units	5				
General					
Drillability & blastability	45 / 0,7				
Work index (kWh/t)	15				
Drill hole dia (mm)	89				
Bench height (m)	10				
Explosive	Anfo				
Interest rate (%) / Quarry life (y)	10 / 20				
Fuel price (\$/liter) / Energy (\$/kWh)	0,5 / 0,1				
Wages (\$/hour)	1/				

All together more than 50 different cases were analysed

General Selection of Drilling Method

Source: Metso Minerals & Tamrock studies

Drillhole Diameter ('')

Impact of drillhole diameter to drilling and blasting costs

Source: Metso Minerals & Tamrock studies

Impact of Drillhole Diameter

Source: Metso Minerals & Tamrock studies

Fines in feed

Boulder Handling

Sort boulders from muck pile Downsize the boulders Minimize boulder count using tighter drill patterns or reduced uncharged height

Example of Direct Costs Caused by Boulders. Customer case, breakage before loading

Key Issue

- Removal of bolder breakage outside process
- -> improved plant utilization

Impact of Blast Distribution on Loading Costs

Impact of Blast Distribution on Loading Costs

Comparison of different shotrock fragmentations

Loading Operations; Examples

Auxiliary machines required for quarry floor cleanup after blasting for loaders with poor mobility

Source: Metso Minerals & Tamrock studies

Typical toe problem requiring auxiliary hyd. excavator work and/or use of secondary blasting

Tight muckpile (poor diggability) due to insufficient heave and throw

Optimum Shotrock Profiles for Loading Operations

Source: Metso Minerals & Tamrock studies

And Feeding by Excavator

Cat recommendations

Impact of Blast Distribution on Hauling Costs with Dumbers

K50 value

Why Coarser Blast Distribution Impacts on Loading and Hauling Costs?

- Material is more difficult to load due to:
 - more likely toe problems
 - bigger boulders
- Scope of equipment changes due to more difficult and/or longer cycle times
- With respect to the equipment there is
 - more wear
 - more maintenance

Results

K50 is 50% point of fraction distribution

Total costs / produced ton

Conclusions of Shotrock Fragmentation

- From the total product cost point of view, there is an optimum shotrock fragmentation. In the case study, the optimum was $k_{50} \sim 250$ mm.
- The crushing cost share is almost unchanged with different K₅₀ values because the blast impacts only on primary crushing
- Even smaller drillhole diameters than used here (89mm) can be economical, because:
 - Smaller drillhole diameters produce fewer fines. In many cases this is considered waste
 - There are fewer boulders to be handled
 - There are fewer micro cracks in the blasted rock, due to more 'gentle blasting'. In many cases, this generates better final aggregate quality
- Boulder management is important

Comparison of Different Crushing Methods

Starting Points for Crushing Method Comparisons

- k₅₀=250mm is being used as shotrock fragmentation
- The following quarrying methods are under comparison:
 - stationary:
 - Material is transported by dump trucks into crushing plants
 - inpit, semimobile
 - material is transported by dump trucks into the semimobile primary jaw crusher, and from there by conveyors to the secondary & tertiary crushing plants
 - inpit, fully mobile
 - primary crushing done at a quarry face with a highly mobile track mounted jaw crusher, and taken from there by conveyors into the secondary and tertiary crushing plants. No dump trucks are used.

Stationary Crushers

Primary crusher cannot normally be moved

Semimobile Inpit Crushing

Primary crusher can be moved but only on a non-frequent basis.

In-pit Fully Mobile Crushing

Primary crusher is track mounted, compact and movable within 5-10 minutes.

In-pit Fully Mobile Crushing Movable and steerable Lokolink conveyor system is a key component

Truck Transport Versus Conveyor Belt

Cost comparison between conveyor belt transport and dump truck haulage hauling distance and annual capacity.

Truck Transport Versus Conveyor Belt

Cost comparison between conveyor belt transport and dump truck haulage as a function of vertical hauling distance and annual capacity given a haulage length to height ratio of 8 : 1.

Starting Point: Three Different Plant Configurations with a Capacity of 1600t/h. Final Product 0-20mm

	Stationary plant	Semimobile primary plant	Fully mobile in-pit primary plant		
Primary crusher type	Fixed Jaw	Semimobile Jaw	Track mounted Jaw		
Size	C160	C140	C125		
Number of units	2	2	2		
Loaders, excavators:					
Bucket size (m3)	12	5,5	5,5		
Number of units	2	3	2		
Dump trucks:					
Size (t)	50	35	-		
Number of units	8	7	-		
Haulage distance (km)	2	1	-		
Conveyor length (km)	-	1	4		
Number of operators	20	20	11		
Secondary & tertiary	Secondaries: 2 * Nordberg OC 1560				
crushers and screens *)	Tertiaries: 3 * Nordberg HP500				
	Seven Screens: 10-20m2				
Other variables	As in previous drilling & blasting example				

*) = K10 in Hong-Kong

Results

Total costs / produced ton

K50 = 250mm, Feed rate 1600t/h

Difference between stationary and fully mobile is about 25%.

Another Example

Tools Available

1) Process Integration and Optimization (PIO) Services

This is not a case of ...

- Increasing the powder factor to increase plant throughput
- Opt(blast) +...+ Opt(crush) ≠ Max(\$\$\$)

lt <u>is</u>...

The development of a quarrying and processing strategy which minimizes the overall cost per tonne treated and maximizes company profit.

> Opt(blast +...+ crush&screen) = Max(\$\$\$)

2) Calculation & simulation tools

Conclusions for Quarry Development

- From the total product cost point of view, there is an optimum shotrock fragmentation.
- Oversize boulder frequency has a significant impact on capacity and cost.
- A smaller drillhole diameter produces fewer fines. In many cases, this is considered waste.
- The crushing cost share is almost unchanged with different K_{50} values when the crushing method is the same. The optimum selection is dependent on:
 - Rock type due to abrasion
 - 'Case-specific factors' like the life of the quarry, investment possibilities etc.
- Whole quarry process optimization instead of the suboptimization of individual components
- Inpit crushing can generate remarkable benefits

Enclosures

- Operational targets for a typical aggregate producer
- K50 feed sizes
- Example: Norwegian case

Operational Targets for a Typical Aggregate Producer

K50 Feed Sizes

Example: Norwegian Case

Basic Selection of Loading Equipment

Guidelines to choose loading tools for primary Nordberg LT's

	BACKHOE EXCAVATOR	FACE SHOVEL	WHEEL LOADER
CONTROL OF OVERSIZE	Very good	Good	Mediocre
FEED CONSISTENCY	Very good	Very good	Mediocre
SIZE vs CAPACITY	Size is selected according to the capacity requirement	Oversize machine is needed to be able to reach to the feed hopper	Size is selected acc. to the capacity and distance
DIGABILITY	Very good	Very good	Good
REACH	510 m	510 m	50100 m
GENERAL COMMENT	In normal blast provides the lowest cost per tonne	Can be considered with fine blast where bigger capacity justifies bigger machine	Provides the possibility to mix feed from different parts of the face

