HYDRAULIC PUMPS

Pumps – convert mechanical energy into fluid energy.

Turbines – exactly the opposite, convert fluid energy to mechanical form.

<u>Classification of pumps</u> – based on the method by which mechanical energy is transferred to the fluid –

- Positive-displacement pumps
- Kinetic pumps

<u>Under positive-displacement</u> -

- These pumps discharge a given volume of fluid for each stroke or revolution.
- Energy is added intermittently

Reciprocating action – pistons, plungers, diaphragms, and bellows.

Rotary action – vanes, screws, lobes.

Types of positive displacement pumps -

Peristaltic pumps-

- Fluid captured within flexible tube
- Tube is routed between rollers rollers squeeze tube and move liquid as parcels

Avoids contact of liquid with mechanical parts

Kinetic Pumps

- Transforms kinetic energy to static pressure adds energy via rotating impeller
- Fluid enters through the center of an impeller and is thrown outwards by the vanes

Types of Kinetic pumps -

Centrifugal

FIGURE 13.10 Centrifugal pump. (Source: Goulds Pumps, Inc., Seneca Falls, NY)

<u>Jet</u>

- Used for household water systems.
- Composed of centrifugal pump and jet assmebly
- Suction is created by the jet in the suction pipe

Comparisons between the two types -

Characteristic	Positive- displacement	Kinetic
Flow rate	Low	High
Pressure rise	High	Low
Self priming	Yes	No
Outlet stream	Pulsing	Steady
Works with high	Yes	No
viscosity fluids		

Pump selection depends on -

- Discharge
- Head requirement
- Horsepower requirements of the pump

So we need to know their performance characteristics – referred to as *performance curves*

Performance curve for a positive displacement type of pump

- As pressure increases there is slight decrease in capacity due to internal leakage from the high pressure side.
- Power needed varies linearly with pressure.
- Volumetric efficiency = flow rate delivered/theoretical flow rate (90 to 100%). Theoretical flow rate based on displacement per revolution times the speed of rotation.

• Overall efficiency = power delivered to fluid / power supplied to pump.

Performance curves for a Centrifugal Pump –

Head versus pump capacity

- Capacity decreases with increasing head
- At "cut-off" head flow is stopped completely and all energy goes to maintaining the head.
- Typical operating conditions well below "cut-off" head.

Head, capacity, efficiency, and power needed

• Normal operation should be in the vicinity of the peak efficiency

Pump designation –

Centrifugal pumps can be operated at *various speeds (rpm)* and with various *impeller sizes*

Larger impellers and speeds provide – greater discharge and head!

Pumps can be designated as - $\mathbf{A} \times \mathbf{B} - \mathbf{C}$

C – size of impeller (inches)

A – diameter of **discharge** pipe (inch) B – diameter of **suction** pipe (inch)

e.g., Pump –

2 x 3 – 10

Capacity versus head for impeller sizes (2 x 3 - 10)

Speed = 3500 rpm

Capacity versus head for impeller sizes (2 x 3 - 10)

Speed = 1750 rpm

Capacity versus head for impeller sizes with horsepower $(2 \times 3 - 10)$

FIGURE 13.24 Illustration of pump performance for different impeller diameters with power required. Performance chart for a $2 \times 3 - 10$ centrifugal pump at 3500 rpm.

Capacity versus head for impeller sizes with efficiency (2 x 3 - 10)

FIGURE 13.25 Illustration of pump performance for different impeller diameters with efficiency. Performance chart for a $2 \times 3 - 10$ centrifugal pump at 3500 rpm.

Composite graph

Affinity laws for centrifugal pumps

Equations that relate the **speed** and **impeller size** to the **head**, **capacity** and **power** of the pump –

Speed varies -

Capacity -

$$\frac{Q_1}{Q_2} = \left(\frac{N_1}{N_2}\right)$$

Total head -

$$\frac{h_{a1}}{h_{a2}} = \left(\frac{N_1}{N_2}\right)^2$$

Power -

$$\frac{P_1}{P_2} = \left(\frac{N_1}{N_2}\right)^3$$

Impeller diameter varies -

Capacity - $\frac{Q_1}{Q_2} = \left(\frac{D_1}{D_2}\right)$

Total head -

$$\frac{h_{a1}}{h_{a2}} = \left(\frac{D_1}{D_2}\right)^2$$

Power -

$$\frac{P_1}{P_2} = \left(\frac{D_1}{D_2}\right)^3$$

Head situation at the suction end

Static suction head (h_s) – vertical distance between the center line of inlet and the free level of the fluid source

Figure 13.38

• When fluid level is ABOVE inlet - static head is positive

• When fluid level is BELOW inlet – static head is negative (*static suction lift*)

Dynamic suction head $(H_s) =$

Static suction head minus the friction head

Static discharge head

- vertical distance between the pump centerline and the free level of the fluid in the discharge tank

Dynamic discharge head =

Static discharge head + friction head + velocity head

Net Positive Suction Head Required (NPSH_R)

Minimum head required in the suction line to prevent *cavitation*.

- Cavitation formation of small bubbles of water when the pressure in the suction tube is too low. Vapor bubbles form at suction inlet and travel to impeller.
- These bubbles then collapse after the impeller when the pressure increases.
- The collapse of the bubbles releases energy that may cause severe erosion of the pump or the discharge lines

Cavitation can cause -

- Decrease in discharge
- Noise, rattling sound
- Erosion and eventual destruction of the pump

This can be avoided by ensuring that the pressure head at the inlet end is <u>greater than</u> the NPSH_R for the pump.

 $NPSH_R$ is predetermined by manufacturers for pumps under various operating conditions of discharge and total head.

Available Net positive suction Head = $NPSH_A$

$NPSH_A$ should be at least 10% greater than $NPSH_R$

Greater margin (100%) in case of critical/emergency installations.

 $NPSH_A = h_{sp} \pm h_s - h_f - h_{vp}$

<u>NOTE</u> - NPSH_A and NPSH_R are always expressed in absolute terms - so add the atmospheric pressure to the gage pressure!

Example 13.3

(a)

Determine the available NPSH Water at 70C $p_{sp} = -20kpa$ $p_{atm} = 100.5 kpa$ $h_s = +2.5 m$ pipe is 1 ½ inch schedule 40 steel pipe, 12 m length elbow is standard, valve is fully open globe valve flow rate = 95 L/min

 p_{abs} in tank = $p_{atm} + p_{sp}$ = 100.5 - 20

= 80.5 kpa

$$h_{sp} = p/\gamma$$

= 80.5 x 10³ N/m² / 9.59 x 10³ N/m³
= 8.39 m
 $v = Q/A = 1.21 \text{ m/s}$
 $N_r = 1.20 \text{ x } 10^5$
 $D/\epsilon = 889$
f = 0.0225, ft = 0.021

 $h_f = pipe friction + elbows + valve + entrance$

= **1.19** m

h_{vp} = **3.25** m at 70C

therefore –

 $NPSH_A = 8.39 + 2.5 - 1.19 - 3.25 = 6.45 m$

 $NPSH_A > 1.10 NPSH_R$

Therefore $NPSH_R < 5.86 \text{ m}$