WORLD-CLASS OUTSTANDING INTERNATIONAL PROGRAM | EXHIBITION | NETWORKING

BOILER FEED WATER PUMPS PERFORMANCE LOSS AMR MOHAMED GAD- RASGAS DR.NICHOLAS WHITE - RASGAS

29TH INTERNATIONAL PUMP USERS SYMPOSIUM HOUSTON SEPT.30TH -OCTOBER 3RD

42nd Turbomachinery 29th Pump SYMPOSIA

GEORGE R. BROWN CONVENTION CENTER 9.30 – 10.3.2013

Presenter

Amr Mohamed Gad

- Senior Machinery Engineer with RasGas company since 2007
- 13 years of experience in maintenance, retrofits, and upgrades of Gas Turbines, Compressors and Pumps in natural gas facilities.
- Previous publications at 6 major worldwide conferences

42nd Turbomachinery 29th Pump SYMPOSIA

GEORGE R. BROWN CONVENTION CENTER

9 30 - 10 3 2013

Index

- RGX2 Steam Condensate System
- Problem Summary
- Troubleshooting History
- Unit 92-P261A Failure
- Performance Deterioration
- RCFA-Unit 92-P261A
- Operational Risk Mitigation
- Recommendations Results
- Lessons Learned

RGX2 Steam Condensate System

Steam condensate system set up at RGX2:

 Total of x6 Boiler Feed Water Pumps (x4 steam turbine driven pumps and x2 motor driven pumps).

Operating philosophy N+2:

• x4 in service and x2 Stand by operation.

RGX2 Steam Condensate System

Pump specifications:

- Rated capacity 750 M3/hr
- Rated power 1.7 MW
- Differential head 680m
- Horizontally split casing
- 4 stage with double inlet impeller

RGX2 Steam Condensate System

New pump before installation

Old pump at skid in RGX2

42nd Turbomachinery 29th Pump <u>SYMPOSIA</u>

```
GEORGE R. BROWN CONVENTION CENTER 9.30 - 10.3.2013
```

Problem Summary

- One pump experienced high thrust bearing temperature alarm after 16 months of operation
- The thrust bearing was replaced twice during the following 6 months without identifying the root cause
- System operation indicated low pump performance
- During the 25 months of operation, thrust bearing temperature again reached high alarm level and pump was found seized upon inspection

2nd Turbomachinery 29th Pump SYMPOSIA

Troubleshooting History

Historical Records:

Unit 92-P261A historical events shown on a timeline

pump's thrust bearing temperature increase due to bearing degradation over one year – alarm level reached (85 deg C)

7 / Boiler Feed Water Pumps Performance Loss

42nd Turbomachinery 29th Pump SYMPOSIA

9.30 - 10.3.2013

GEORGE R. BROWN CONVENTION CENTER

Troubleshooting History

Unit 92-P261A -Vibration readings:

GEORGE R. BROWN CONVENTION CENTER

9.30 - 10.3.2013

Unit 92-P261A – Failure

Thrust Bearing failure signs:

Scored and smeared thrust pads

Smeared Journal pads

42nd Turbomachinery 29th Pump SYMPOSIA

GEORGE R. BROWN CONVENTION CENTER 9.30 - 10.3.2013

Unit 92-P261A – Failure

Cavitations'damage

42nd Turbomachinery 29th Pump SYMPOSIA

10 / Boiler Feed Water Pumps Performance Loss

George R. Brown convention center 9.30 - 10.3.2013

Unit 92-P261A – Failure

RCFA initiated August 2011 and completed Oct. 2011

42nd Turbomachinery 29th Pump SYMPOSIA

11 / Boiler Feed Water Pumps Performance Loss

George R. Brown convention center 9.30 - 10.3.2013

Performance Deterioration

RCFA-Unit 92-P261A

RCFA-Unit 92-P261A

RCFA – Findings:

- Root Cause (Human) Incorrect material specification of the pump casing for boiler feed water service led to major damage of casing inner walls and rotor parts
- Contributing Factor 1 (Latent) Insufficient online monitoring of pump performance due to inadequate instrumentation prevented effective pump health monitoring
- Contributing Factor 2 (Latent) Inadequate surveillance program for boiler feed water conditions led to a possible corrosive environment within pump flow path

14 / Boiler Feed Water Pumps Performance Loss

42nd Turbomachinery 29th Pump symposia

9.30 - 10.3.2013

GEORGE R. BROWN CONVENTION CENTER

RCFA-Unit 92-P261A

RCFA – Recommendations:

- Immediate action: Purchase x6 new BFWPs with 12%Cr Stainless Steel casings (A487CA6NM) and replace the existing pumps with carbon steel casing (A216 WCB)
- Medium action: Revise Equipment Strategy to perform bi-monthly online performance monitoring task including steam condensate dissolved oxygen and PH levels to ensure remaining within specification
- Long term action: Improve online monitoring: -Digital discharge pressure transmitter
 - -Install flow measurement devices on the discharge and recirculation line

15 / Boiler Feed Water Pumps Performance Loss

42nd Turbomachinery 29th Pump symposia

George R. brown convention center 9.30 - 10.3.2013

Operational Risk Mitigation

Integrated Repair plan:

- x3 pumps repaired between Oct. 2011 and March 2012
- x2 pumps were repaired used spare parts supplied from third party as fast repair.
- System reviewed for equipment reliability (Turbines, Motors, Automatic Recycle Valves, Instruments etc.) and corrective actions taken as appropriate
- Frequent measurement of discharge and recycle flow using clamp flow meter to assess pump performance
- Long term Installation of x6 new pumps with stainless steel casing (procurement and installation time-14 months)

17 / Boiler Feed Water Pumps Performance Loss

9.30 - 10.3.2013

GEORGE R. BROWN CONVENTION CENTER

Recommendations Results

- Performance for the repaired 3 units as interim solution was similar to OEM design.
- Ultimate replacement of all pumps by new stainless steel casing's units results in operating the BFW system with reliable units as per OEM design.

18 / Boiler Feed Water Pumps Performance Loss

9.30 - 10.3.2013

Max dia = 390 mm

Lessons Learned

- Follow API610 guidelines during procurement (material specifications versus fluid service)
- Improve datasheet and specification review during project FEED and procurement
- Improve online monitoring instruments required during plant design

19 / Boiler Feed Water Pumps Performance Loss | October13

GEORGE R. BROWN CONVENTION CENTER 9.30 - 10.3.2013

Questions?

Authors:

Amr Mohamed Gad – RasGas

Dr. Nicholas White – RasGas

asmohamedgad@rasgas.com.qa

42nd Turbomachinery 29th Pump symposia

GEORGE R. BROWN CONVENTION CENTER 9.30 - 10.3.2013

Backup

42nd Turbomachinery 29th Pump SYMPOSIA

21 / Boiler Feed Water Pumps Performance Loss

George R. brown convention center 9.30-10.3.2013

42nd Turbomachinery 29th Pump symposia

22 / Boiler Feed Water Pumps Performance Loss

George R. brown convention center 9.30-10.3.2013

0	1 APPLICABLE TO: O PROPOSALS ● PURCHASE 🔘 AS BUIL	LT
	2 FOR Ras Laffan Liquefied Natural Gas Company Limited (3)	UNIT 92 Steam and Condensate System
	3 SITE RAS LAFFAN, QATAR	SERVICE Boiler Feed Water Pump
1	4 NO. REQ 5 PUMP SIZE 8x10x14.5 H/Y	TYPE Centrifugal NO. STAGES 4
1	5 MANUFACTURER UNION PUMP S.A.S.	MODEL DVMX SERIAL NO. P350 to P354
	6 NOTES: INFORMATION BELOW TO BE COMPLETED: O BY PURCHASER	BY MANUFACTURER OR PURCHASER
	7 O GENERAL (3.1.1)
0	8 PUMPS TO OPERATE IN (PARALLEL) NO. MOTOR DRIVEN	2 NO. TURBINE DRIVEN 3 (2+1)
1	9 (SERIES) WITH 92-P261A/B/C/D PUMP ITEM NO.	92-P261C/D PUMP ITEM NO. 92-P261A/B, 92-P271A
1	10 GEAR ITEM NO. MOTOR ITEM NO.	92-PM261C/D TURBINE ITEM NO. 92-PT261A/B, 92-PT271A
	11 GEAR PROVIDED BY MOTOR PROVIDED BY	Pump Vendor TURBINE PROVIDED BY Pump Vendor
	12 GEAR MOUNTED BY MOTOR MOUNTED BY	Pump Vendor TURBINE MOUNTED BY Pump Vendor
	13 GEAR DATA SHT. NO. MOTOR DATA SHT. NO.	TURBINE DATA SHT. NO.
	14 OPERATING CONDITIONS	SITE AND UTILITY DATA (CONT'D)
Е	15 ● CAPACITY, NORMAL	WATER SOURCE Fresh Water
	16 OTHER	CHLORIDE CONCENTRATION (PPM) (3.5.2.6)
Е	17 ● SUCTION PRESSURE MAX./RATED 5.10 / 2.30 (BARG)	INSTRUMENT AIR: MAX/MIN PRESS 7 / 4.5 (BARG)
0	18 ● DISCHARGE PRESSURE 65.20 *1.7 (BARG)	LIQUID
0	19 ● DIFFERENTIAL PRESSURE 62.90 *1.7 (BAR)	TYPE OR NAME OF LIQUID Boiler Feed Water *1.3
0	20 O DIFF. HEAD *1.8 680.4 (m) NPSHA 13.6 (m) *1.1	PUMPING TEMPERATURE:
Е	21 O PROCESS VARIATIONS (3.1.2)	NORMAL 120 (°C) MAX. 150 (°C) MIN. 43 (°C)
	22 ● STARTING CONDITIONS Auto Start/Stop *1.5 (3.1.3)	VAPOR PRESSURE 2 (BAR abs) @ 120 (°C)
	23 SERVICE: CONT. O INTERMITTENT (STARTS/DAY)	 RELATIVE DENSITY (SPECIFIC GRAVITY):
	24 PARALLEL OPERATION REQ'D (2.1.11) *1.6	NORMAL 0.943 MAX MIN
	25 O SITE AND UTILITY DATA *1.2	O SPECIFIC HEAT, Cp (kJ/kg °C)
	28 LOCATION: (2.1.29)	 VISCOSITY 0.232 (cP) @ 120 (°C)
	27 O INDOOR O HEATED O UNDER ROOF	O MAX. VISCOSITY (cP)
	28 OUTDOOR UNHEATED O PARTIAL SIDES	O CORROSIVE/EROSIVE AGENT (2.11.1.8)
	29 GRADE O MEZZANINE O	O CHLORIDE CONCENTRATION (PPM) (3.5.2.6)
	30 O ELECTRIC AREA CLASSIFICATION (2.1.22 / 3.1.5)	O H ₂ S CONCENTRATION (PPM) (2.11.1.11)
	31 *1.4	LIQUID (2.1.3) O HAZARDOUS O FLAMMABLE
	32 O WINTERIZATION REQ'D • TROPICALIZATION REQ'D.	O OTHER
	33 SITE DATA (2.1.29)	PERFORMANCE
0	34 ALTITUDE (m) BAROMETER 1.013 (BAR abs)	PROPOASAL CURVE NO. 620319A/B/C/L RPM 2980
0	35 ● RANGE OF AMBIENT TEMPS: MIN/MAX. <u>4</u> / <u>49</u> (°C)	MPELLER DIA. RATED 368.45 MAX. 390 MIN. 351 (mm)
0	38 ● RELATIVE HUMIDITY: MIN / MAX <u>35</u> / <u>80</u> (%)	RATED POWER 1673.2 (BHP) EFFICIENCY 79.2 (%)
	37 UNUSUAL CONDITIONS: (2.1.23) • DUST O FUMES	MINIMUM CONTINUOUS FLOW:
0	38 OTHER Salty and dusty (Sand Storm)	THERMAL(m3/h) STABLE230 (m3/h)
0	39 O UTILITY CONDITIONS:	PREFERRED OPERATING REGION 535 TO 920 (m3/h)
0	40 STEAM: DRIVERS HEATING	ALLOWABLE OPERATING REGION 340 TO 950 (m3/h)
0	41 MIN <u>39.5</u> (BARG) <u>366</u> (°C) (BARG) (°C)	MAX HEAD @ RATED IMPELLER *1.3 792 *1.9 (m)
0	42 MAX <u>41.3</u> (BARG) <u>376</u> (°C) (BARG) (°C)	MAX POWER @ RATED IMPELLER 1900 (kW)
0	43 ELECTRICITY DRIVERS HEATING CONTROL SHUTDOWN	NPSHR AT RATED CAPACITY 7.4 (m) (2.1.8)
0	44 VOLTAGE 6600 240 120 24	SUCTION SPECIFIC SPEED 11820 (m ³ /hr - m) (2.1.9)
1	45 HERTZ 50 50 50	MAX. SOUND PRESS. LEVEL REQ'D <85 (dBA) (2.1.14)
0	46 PHASE <u>3 1 1</u>	EST MAX SOUND PRESS. LEVEL 84 (dBA) (2.1.14)

23 / Boiler Feed Water Pumps Performance Loss

42nd Turbomachinery 29th Pump symposia GEORGE R. BROWN CONVENTION CENTER 9.30 – 10.3.2013

Operational Risk Mitigation

Integrated Repair plan

Task Name	Duration	Start	Finish	Resource Names	Dece	mber	January		February		N	March Apr		April		May		June		July
					11/27	12/11	12/25	1/8	1/22	2/5	2/19	3/4	3/18	4/1	4/15	4/29	5/13	5/27	6/10	6/24
1 Mitigation Plan for exposure without healthy spare BFWP	16 days	10/26/11	11/16/11	Team 1																
2 Procurement of x6 new BFWPs	53 days	10/26/11	1/5/12	Team 1																
3 Procurement of consumable spares (x1 set) from CU	120 days	11/7/11	4/12/12	Team 1																
4 Procument for consumable spares (x2 sets) from WG	64 days	11/1/11	1/22/12	Team 1					Ψ											
5 eMWO for CU Service Engineer	1 day	11/3/11	11/4/11	Team 1																
6 Write QA/QC check list for vendor BFWP repairs	3 days	11/13/11	11/15/11	Team 1	1															
7 Award CU contract for repair services	13 days?	12/2/11	12/19/11	Team 1																
8 Locally manufacture replacement ST guide rod assembley	7 days	12/21/11	12/29/11	Team 1																
9 Procure spare ST guide rod assembley (x2 sets) from DR (USA)	29 days	12/19/11	1/22/12	Team 1					•											
10 Procure spare ST guide rod assembley (x1 set) from DR (UAE)	18 days	12/22/11	1/14/12			•		-												
11 92-P261A repair and installation	50 days	11/4/11	1/11/12	CU/Team 1				- v												
12 Repair of original 92-P261A rotor	116 days	12/13/11	5/14/12	CU/Team 1			-										Ψ			
13 92-P261B repair and installation	35 days	11/3/11	12/20/11	WG/Team 1		-														
14 92-P271 repair and installation	49 days	12/21/11	2/20/12	WG/Team 1			-				Ψ									
15 92-P261C repair and installation	37 days	2/21/12	4/11/12	WG/Other/Team 1																
16 92-P261D repair and installation	37 days	4/12/12	6/1/12	WG/Other/Team 1														-		
17 ARV replacement and surveillence	76 days?	8/1/11	11/15/11	Team 2																
18 Troubleshooting Instrumentation & Controls	5 days	10/30/11	11/4/11	Team 3																
19 Enhanced monitoring program	21 days	10/26/11	11/23/11	Team 1/ Team 2																
20 Failure Analysis for ARV's	177 days	3/2/11	11/4/11	Team 2																
21 Failure Analysis for Pumps	23 days	11/3/11	12/5/11	Team 1																
22 Failure Analysis for Instrumentation & Controls	24 days	10/30/11	12/1/11	Team 3																
23 Manufacture of x 6 BFWPs at CU	141 days	1/2/12	7/6/12	CU/Team 1			-													

42nd Turbomachinery 29th Pump symposia

24 / Boiler Feed Water Pumps Performance Loss

George R. Brown convention center 9.30 - 10.3.2013