A Vibration Problem in Vertical Circulating Water Pumps

April 24, 2008

Presented by:

Matthew A. Gaydon

Bechtel Power Corporation

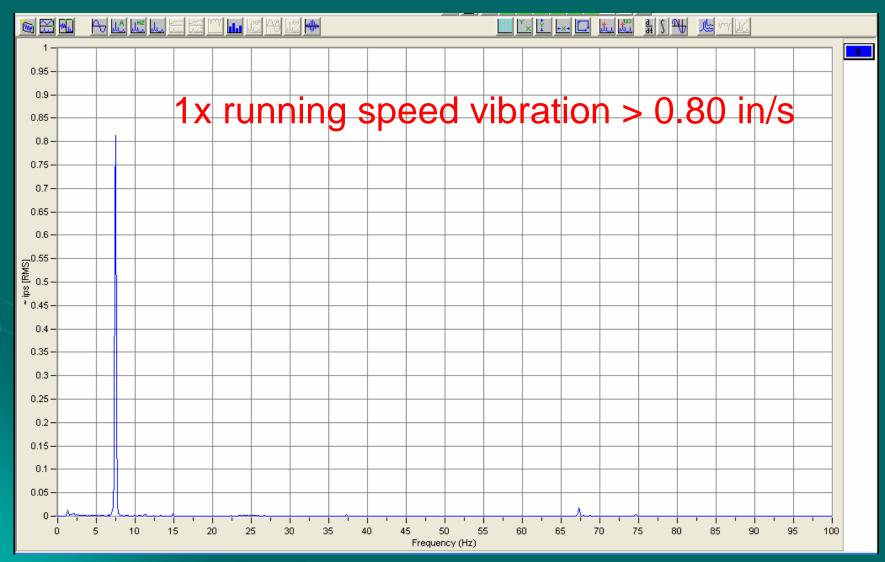
Frederick, MD 21703 USA Tel: (301) 228-8360 www.bechtel.com

Vertical Circulating Water Pumps

- Two Pumps Operating in Parallel on Cooling Tower
- Single-Stage Mixed-Flow Type Pump
 - Semi-open Impeller Design
 - 77" Bowl Diameter / 54" Discharge
- Direct Drive with Induction Motor
 - 445 rpm (7.42 Hz)
 - 2,138 bhp
- Rated Condition:
 •86,000 gpm
 - •86 feet

Vibration Amplitude

Factory Test


 Acceptance: ISO 10816-3, Group 3, Flexible Support Class, Zone B/C (0.28 in/s RMS)

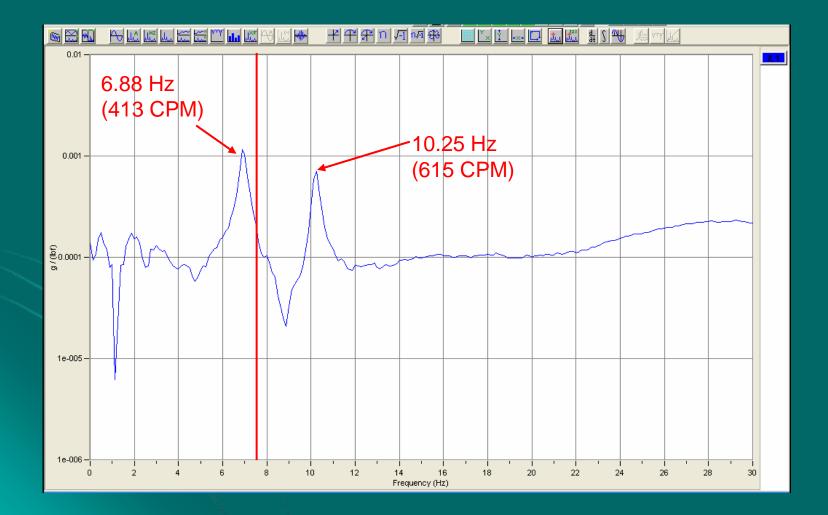
- Top of Motor (parallel-to-discharge): 0.22 in/s RMS
- Top of Motor (perpendicular-to-discharge): 0.16 in/s RMS

Field Test

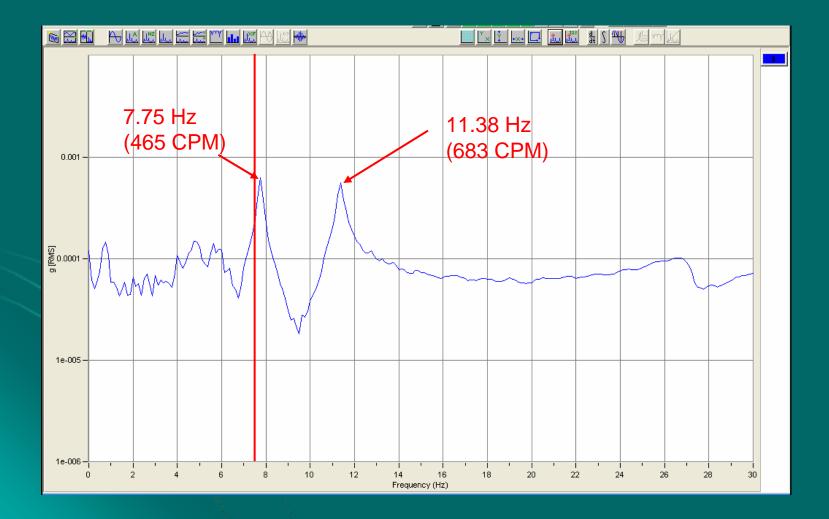
- Acceptance: ISO 10816-3, Group 3, Rigid Support Class, Zone B/C (0.18 in/s RMS)
 - Top of Motor (parallel-to-discharge): 0.13 in/s RMS
 - Top of Motor (perpendicular-to-discharge): 0.80 in/s RMS
 - Dominate frequency at 1X running speed.

Initial Field Vibration Spectrum (perpendicular-to-discharge)

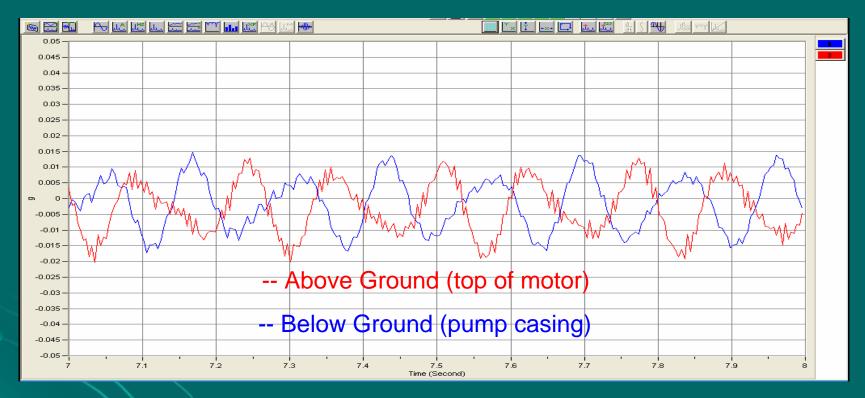
Design-Phase FEA Results


- Foundation flexibility Based on concrete properties from Civil Engineering design
- Motor reed critical frequency Based on motor vendor information (+/- 15% margin)

Running Speed = 7.42 Hz						
	Natural	Separation				
Mode	Frequency (Hz)	Margin				
1 Parallel	4.70	-36.7%				
1 Perpendicular	5.13	-30.8%				
2 Parallel	8.32	12.1%				
2 Perpendicular	8.73	17.7%				


Field Impact Test Conditions

- Pump installed per manufacturer's recommendations
- Pump not running and forebay filled with water
 - Accounts for partial entrained water mass
- Motor coupled and rotor lift set
 - Weight of pump rotor is supported at motor thrust bearing
- Discharge piping connected with flexible expansion joint


Field Impact Test Results (parallel-to-discharge)

Field Impact Test Results (perpendicular-to-discharge)

Field No-Load Motor Test (uncoupled from pump)

 Traces indicate out-of-phase motion of top of motor compared to pump casing

1st pump bending mode

Field Natural Frequencies (semi-wet)

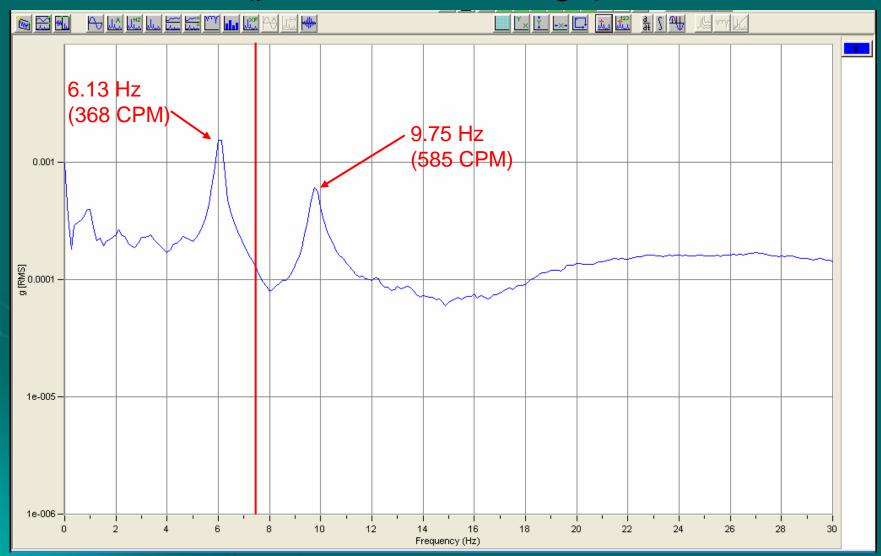
Running speed = 7.42 Hz (445 RPM)							
A Pump							
	Natural	Separation					
Direction	Frequency (Hz)	Margin					
Parallel (1st Mode)	6.88	-7.3%					
Perpendicular (1st Mode)	7.75	4.4%					
B Pump							
	Natural	Separation					
Direction	Frequency (Hz)	Margin					
Parallel (1st Mode)	6.75	-9.0%					
Perpendicular (1st Mode)	7.50	1.1%					

Note: A pump vibrations were more than 5 times those on the B pump, indicating that the operating natural frequencies shift down by approximately 0.25 Hz.

Fixing the Problem

Finite Element Analysis

- Adjusted model to match field measurements, "Model Calibration"
 - Infinitely stiff foundation
 - Doubled motor reed critical frequency
- Analyzed corrective action options with FEA to assure success


Cut Slots in Stiffening Ribs to De-Tune Natural Frequencies

- FEA predicted a minimum separation margin of 15% for the first mode (perpendicular)
- Achieved as-measured separation margin of 12.4% first mode (perpendicular).



Modified Pump Impact Test Results (parallel-to-discharge)

Modified Pump Impact Test Results (perpendicular-to-discharge)

Final Natural Frequencies

A Pump	Natural freque	ency (Hz)		
Direction	Before	After	% Change	% Separation
In Line (1st Mode)	6.88	6.13	10.90%	18.27%
Perpendicular (1st Mode)	7.75	6.50	16.13%	13.33%

B Pump	Natural frequency (Hz)			
Direction	Before	After	% Change	% Separation
In Line (1st Mode)	6.75	6.13	9.19%	18.27%
Perpendicular (1st Mode)	7.50	6.50	13.33%	13.33%

Operational vibrations were 0.12 in/s RMS or less on both pumps in both directions and were acceptable.

Final Vibration Amplitudes

- Operational vibrations less than 0.12 in/s RMS on both pumps in all direction.
- Vibration meets acceptance standards.
- Pumps accepted by customer.

Conclusions

- Factory testing results cannot always ensure acceptable field vibration levels.
- FEA combined with field vibration measurements is an excellent tool for properly diagnosing and correcting unexpected field vibration problems.
- Without field vibration measurement, FEA is only as good as its input data assumptions
 - Foundation information
 - Motor reed critical frequency