Lecture 3: Exercise on measurement of quantities.

Content

Exercise (i) Specific gravity of slurry

Exercise (ii) % solids in slurry

Exercise (iii) Mixing of slurry streams

Exercise (iv)Slurry making

Exercise (v)Units

Exercise (vi)Quiz question

Exercise – (I) specific gravity of slurry

Calculate specific gravity of slurry which contains 65% lime. The specific gravity of lime is 2600 kg/m³. Also calculate volume of slurry.

Substituting the values in equation 1of lecture 2

$$65 = \frac{100 \times 2600(\rho_m - 100)}{\rho_m(2600 - 1000)}$$

By solving $\rho_m = \text{specific gravity of slurry} = 1667 \; \frac{kg}{m^3}$

Volume of slurry in percent = $65 \times \frac{1667}{2600} = 41.66\%$

Exercise - (II): % solids in slurry

A slurry stream containing quartz is diverted into a 1 liter can. Time taken to fill is 8 seconds. The density of the slurry and quartz is 1400 kg/m³ and 2600 kg/m³ respectively. Calculate (a) percent solids by weight and (b) mass flow rate quartz within slurry.

Substituting the values in equation 1 of lecture 2

% solid (%x) =
$$\frac{100 \times \rho_{S}(\rho_{m} - 1000)}{\rho_{m (\rho_{S} - 1000)}}$$
$$= \frac{100 \times 2650 \times 400}{1400 \times 1600}$$
$$= 45.88\%.$$

Equation 3 of lecture 2

$$M(kg/hr) = \frac{F\rho_s(\rho_m - 1000)}{(\rho_s - 1000)}$$

$$F = \frac{3600}{8000} \text{ m}^3/\text{hr}.$$

$$M = \frac{3600}{8000} \times 1400 \times 0.4588$$

=289kg/hr.

If the time to fill the can is 7s, rest everything remains the same, calculate mass flow rate of quartz in slurry.

Answer =330 kg/hr

Exercise (III) Mixing of slurry streams

Two slurry streams enter a pump. One stream has flow rate of 5m³/hr and contains 40% solids by weight. Other stream has 3.4 m³/hr flow rate and contains 55% solids by weight. Density of solid is 3000kg m⁻³ in both slurry streams. Calculate tonnage of any solids pumped/hr.

To solve the problem, use the following steps.

- 1. Calculate density of slurry streams $\rho_{M1}=1364\,\mathrm{kg/m^3}$ and $1579\,\frac{\mathrm{kg}}{\mathrm{m^3}}$
- 2. Calculate mass flow rate of slurry $M_1 = 2728$ and $M_2 = 2953$ kg/hr
- 3. Add mass flow rate which will give 5.681T/hr.

Exercise (IV) Slurry making

Calculate how many kg of magnetite must be added to 100kg water to make up a slurry with specific gravity $(\rho_m) = 1.4$. g/cm³.

Specific gravity of $Fe_3O4 = 5.2g/cm^3$

Wt % solid =
$$\frac{100 \times 5.2 (1.4 - 1)}{1.4 \times (5.2 - 1)} = \frac{100 \times 5.2 \times 0.4}{1.4 \times 4.2} = 35.4 \%.$$

Wt % water = 100 - 35.4 = 64.6 %

$$\frac{total\,mass}{massof\,water} = \frac{M_m}{M_{H2}0} = \frac{100\%}{64.6\%}$$

$$M_{\rm m} = \frac{100\%}{64.6\%} \times 100$$

=155kg

Mass of magnetite =155-100 =55kg

Exercise (V) Units

- a) Convert 360 mm Hg pressure into (a)N/m² and (b)Lb/ft² Answer = 47995.2 N/m^2 and 1002.4 Lb/ft^2
- b) Calculate the value of universal gas constant into (a)CGS unit and (b)MKS unit . given $R=82.0578~\frac{\text{Cm}^3~\text{atim}}{\text{gmole}~^{\circ}\text{C}}~\text{.}$ The problem is solved in lecture 2.
- c) Pressure in an evacuated vessel was recorded 1.2dynes/Cm². Express this value in microns of mercury at 25°C.
 Answer 1.596 micron.

Exercise (VI) Quiz question

Two streams of slurry enter a pump. The volumetric flow rate of stream2 is 0.68 times and density is 1.16 times that of slurry no. 1 respectively. if density of slurry no.1 is 1364 kg/m 3 . Then mass flow rate (M₁) of slurry stream no.1 is

(A)
$$\mathrm{M_1} = 0.72~\mathrm{M_2}$$
 (B) $\mathrm{M_1} = 0.92~\mathrm{M_2}$ (C) $\mathrm{M_1} = 1.5~\mathrm{M_2}$

(D)
$$M_1 = 0.8 M_2$$

M₂ is mass flow rate of slurry 2

One can derive the following equation expressing mass flow rates in terms volume flow rates and density of slurry

$$\frac{M_1}{M_2} = \frac{F_1}{F_2} \frac{(\rho_{M1} - 1000)}{(\rho_{M2})}$$

 M_1 and M_2 mass flow rate of stream 1 and 2

 $F_1 \,$ and $F_2 \,$ volume flow rate of stream 1 and 2

 ρ_{M1} and $\rho_{M2}~$ density of slummy 1 and 2.

Using above equation: $F_2=0.68~F_1$ and $\rho_{M2}=1.16~\rho_{M1}$.

 $M_1 = 0.92 M_2$ 'B' is correct.