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INTRODUCTION

Borehole geophysical data can provide an objective geologically-related
interpretation of the lithology intersected by a drillhole. In mineral
exploration projects in greenstone belts, geological logging of the drill
core is difficult because different volcanic and volcaniclastic rocks are
often visually similar. More rapid and efficient geological logging of core
is possible by enlisting the aid of geophysical logging tools which mea-
sure physical and chemical properties that are not visible and therefore
complement observations made in geological logs.

To interpret geology from geophysical logging data one must under-
stand the physical rock properties to which each of the geophysical
parameters respond (Killeen, 1991; Killeen et al., 1995a,b; Mwenifumbo
et al., 1993; Pflug et al., 1994). For example, the magnetic susceptibility
(MS) of a volume of rock is a function of the amount of ferromagnetic
minerals (magnetite and pyrrhotite) contained within the rock. In time
domain induced polarization (IP) the chargeability is an indication of
metallic sulphides and oxides. Resistivity relates to porosity and salinity
of the pore fluids and conductive minerals such as base metal sulphides,
oxides and graphite. Natural gamma rays originate from the radioactive
elements potassium, uranium and thorium which may be preferentially
concentrated in certain lithologic units. The spectral gamma-gamma
probe measures the density of the rock around the borehole and provides
information (the spectral gamma-gamma ratio) on the effective atomic
number (Zeq) of the rock.

LOG CORRELATION AND THE 
‘PSEUDO-GEOLOGICAL’ LOG

Figure 1 shows a text-book case of correlation between geological and
geophysical logs in volcanic rocks: the natural gamma-ray logs from the
Mudhole Prospect near Buchans, Newfoundland (Mwenifumbo and
Killeen, 1987). However, usually two or more physical rock property
measurements are necessary to yield a unique signature for any given
rock unit.

In November 1993, a suite of more than ten logs was recorded in a
600 m deep hole, immediately after it was drilled, in the Kam-kotia mine

area, west of Timmins. It was determined that the geophysical parame-
ters that most closely reflected the changes in the geology were the
gamma-ray, density and MS logs. Figure 2 shows the gamma-ray, density
and MS logs on the left. Subjectively, by observation of the geophysical
logs, pseudo-geological boundaries were chosen, as shown on the three
logs in the centre of Figure 2. Zones which appeared to be homogeneous,
with similar amplitudes in the logs, were assigned the same cross-
hatched patterns, as shown on the right. Thus, based strictly on the vari-
ations in physical properties, a pseudo-geological log was produced as
shown on the three logs on the right in Figure 2, before the geologist had
logged the drillcore. The pseudo-geological log was determined to con-
tain five different geophysical units.

Figure 3 (left) shows the three logs plotted with the area under the
log-trace filled with the different geophysical unit patterns. The three
logs illustrate how one parameter may change within a single unit, while
the others are relatively constant. For example, in unit 1 between 130 and
220 m the gamma-ray log and density log are fairly homogeneous, but
the MS log shows large variations indicating this unit has ‘magnetic’ sec-
tions (increased magnetite content). For comparison, Figure 3 (right)
shows the geological log which was produced from observation of the
core. Based on the use of multiple geophysical logs, about 90% of the
geological units were picked correctly by the pseudo-log. The derivation
of the pseudo-geological log was subjective, but the experience gained
would be invaluable in formulating an algorithm for objective produc-
tion of the pseudo-geological log by a computer.

Figure 4 illustrates an early attempt to computerize the picking of
boundaries and geological units or zones, using geophysical logs from
hole 78928 in the McConnell Nickel Deposit. Here, a zone-picking algo-
rithm has been used to process a density log to locate significant changes
in the density which could represent a change in rock type. Essentially
the algorithm analyzes a sample interval (with, say, 20 data points) to
determine if it is statistically different from the next sample interval. The
variables to be considered are the number of data points in a sample
interval (SI), and the probability level (PL) used to determine if the
intervals are different. Nine different computer picks of a density log are
shown in Figure 4. On the left are three density logs showing computer
picks of different zones for SI of 20, 50, and 100 samples, all with a PL of
0.7. It is easy to see that as the SI increases, the number of zones picked
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Figure 1: Geological and gamma-ray logs from hole MH2572, Buchans
Mine Area, Newfoundland. Contacts between major volcanic units are well
defined on the gamma-ray log, and the thickness of individual units can be
easily determined. Changes ot easily seen in the geological log are identifi-
able in the gamma-ray log, such as the amygdaloidal andesite at 200 m.

Figure 2: Gamma-ray, density and magnetic susceptibility logs from
hole R5603 in the Kam-kotia Mine Area, Ontario. To produce a
pseudo-geological log, boundaries between homogeneous zones on the
geophysical logs (left) are selected and shown in the centre of the figure.
Then zones with similar amplitudes are assigned similar patterns to
produce the pseudo-geology on the right.
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Figure 4: Nine different computer picks of zones in a density log for hole 78928 in the McConnell Deposit, Ontario. The three density logs on the left show
computer picks of zones based on 20, 50 and 100 data points in a sample interval (SI), all with a probability level (PL) of 0.7. For the three logs in the centre
the PL was raised to 0.8, and for the three logs on the right to 0.9.
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Figure 3: Geophysical logs from the Kam-kotia Mine Area, Ontario, showing the geophysical units of the pseudo-geological log on the left compared to
the geological units based on drill core observations on the right.
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goes down. Also, there is a loss of data at the beginning and end of the
log where there aren’t enough points to do the computation. In the cen-
tre three logs, the PL is increased to 0.8 and on the right three logs it is
increased to 0.9. Increasing the PL means that only the most guaranteed
different zones will be picked (i.e., those with a high probability (confi-
dence level) of being truly different).

This analysis was done on all of the geophysical logs available for hole
78928 in the McConnell deposit, and it was determined that a SI of 20
and a PL of 0.8 gave the best results. Figure 5 shows all of the geophysical
logs processed with these SI and PL values, and the resulting pseudo-
geological log for each parameter. It is apparent that some logs, such as
the IP log, are not very helpful in this particular case. A final pseudo-
geological log would have to be some combination of all of the zones
based on the different geophysical logs. A new mathematical approach
in the zone-picking procedure, combining the data from all of the geo-
physical logs, is now being investigated.

It is entirely feasible to develop computer software to produce the
pseudo-geological log objectively, in real-time in the field. Its accuracy
would be dependent on the number of parameters it had to work with,
as well as previous training from other holes in the area. Various
approaches to this problem have been tried, such as the work by Hoyle
(1986), and Wu and Nyland (1987).
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Figure 5: Multiparameter geophysical logs of hole 78928, McConnell Nickel Deposit, Ontario, processed with the zone picking algorithm using a SI of 20
and a PL of 0.8. Each geophysical log provides its own pseudo-geology log. A final pseudo-geology log would be produced by combining the information
on zones picked in each geophysical log.
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