Crushing - Optimizing the Process

Per Svedensten

Improving Processes. Instilling Expertise.

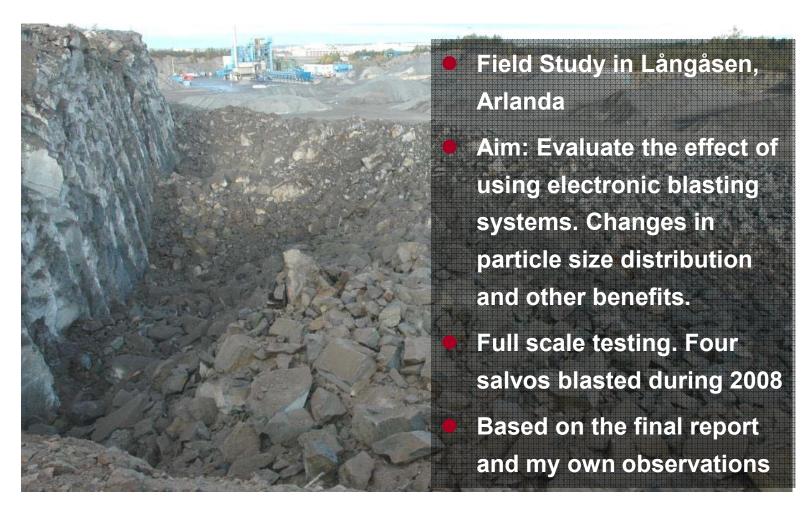
Optimizing the Process

- Methods to combine and simulate technical and economic performance
- Optimum crushing plant performance is difficult to achieve due the process characteristics. Different compared to all other industrial processes.
- Optimizing method for best performance
- Partly implemented in PlantDesigner 10

Crushing Plant Performance

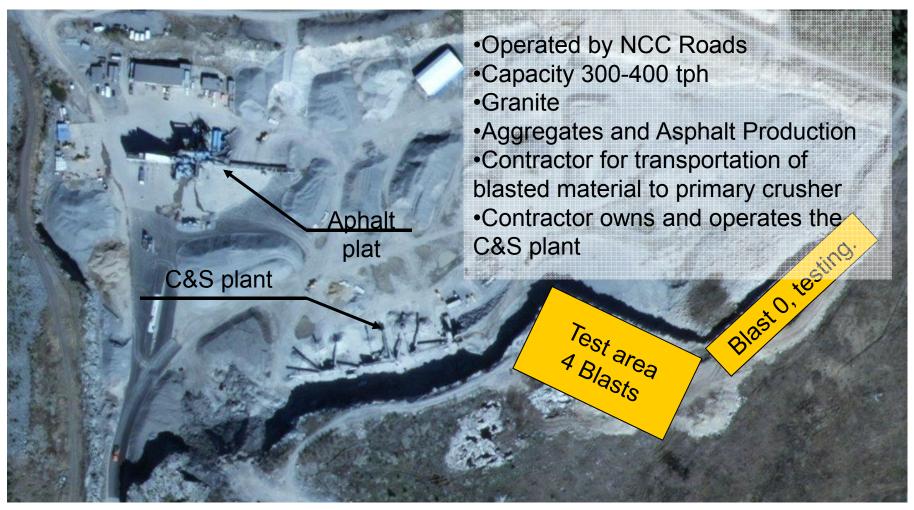
PER SVEDENSTEN

Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2007


Crushing Plant Optimization

- Point of interest
 - ✓ Crushing stage
 - ✓ Crushing plant
 - ✓ Quarry Process
- Today:
 - Optimize the feed
 - Optimize the process

MinBaS II Project: Optimized blasting



The Study

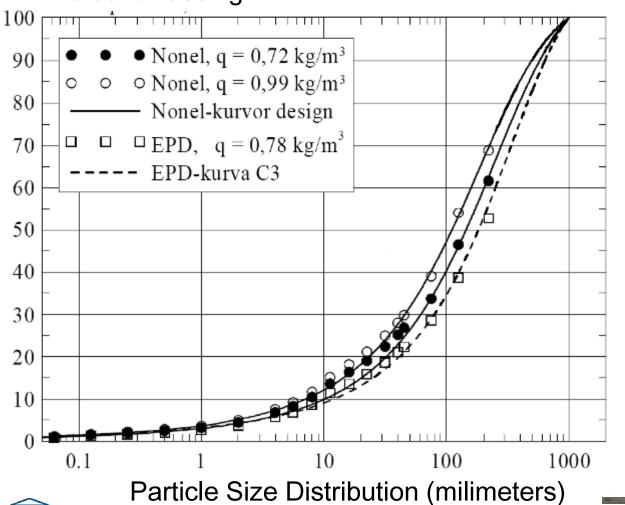
- Drilling and Blasting
- Loading and Hauling
- Crushing and Screening Plant
- Comparisons between the cost and earnings for the different alternatives.
- Conclusions and recommendations

The Quarry Långåsen, Arlanda

Blasting Test plan

Blast 1	None Electric	None Electric
	1.35 lb/yd ³	1.85 lb/yd ³
Blast 2	None Electric	None Electric
	1.85 lb/yd ³	1.35 lb/yd ³
Blast 3	Electronic Blasting System	
	1.35 lb/yd ³ 10 ms between holes	
Blast 4	Electronic Blasting System	
	1.35 lb/yd ³ 5 ms k	petween holes

The blasting was divided into 11 subparts which were analyzed separately


Blasted Material

Blasting result Measuring the Particle Size Distribution

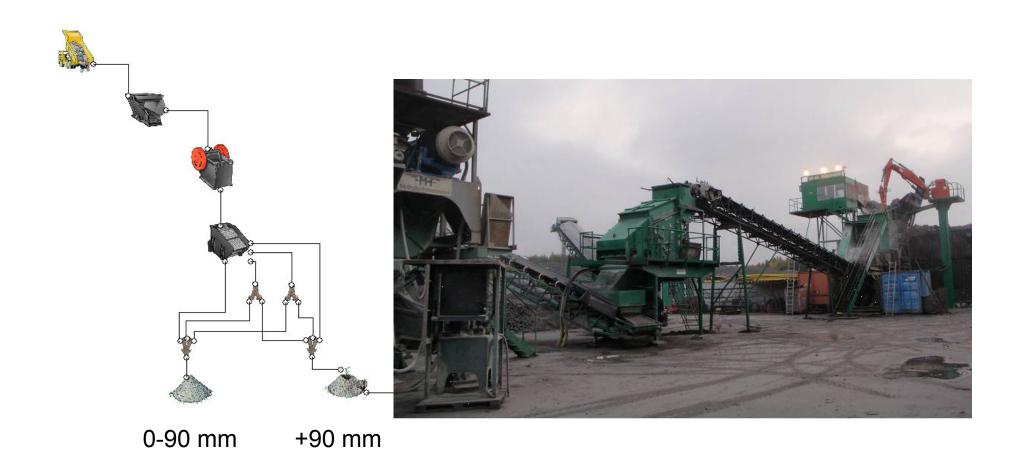
Blasting Result Cost* Analysis

	None el.	None el.	EPD
	norm PF	high PF	norm. PF
	[\$/ton]	[\$/ton]	[\$/ton]
Drilling and Blasting	0.90	1.23	0.97
Added cost for detonators	0.00	0.00	0.30
Bolder Management	0.30	0.15	0.22
Sum	1.20	1.38	1.49

^{*}All costs are estimates based on publicly available data

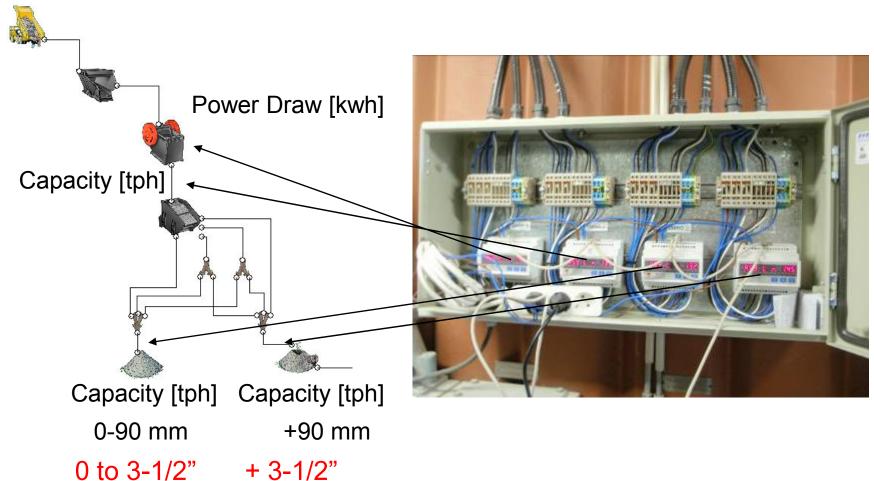
Loading and Hauling Conditions and Measurements

- Loading and Hauling to primary crusher
 - ✓ Wheel loader carries the material from the muck pile to the crusher
- Conducted studies
 - Measurement of wheel loaded loading times
 - ✓ Measurement of loaded material [tph]
 - Manual timing during several days


Loading and Hauling Cost* analysis

	None el. norm. PF	None el. high PF	EPD norm. PF
Contractor [\$/h]	448	448	448
Loading Capasity [tph]	298	316	313
Cost [\$/ton]	1.50	1.42	1.43
Sum incl Drilling and Blasting [\$/ton]	1.20+1.50= =2.70	1.38+1.42= =2.80	1.49+1.43= = 2.92

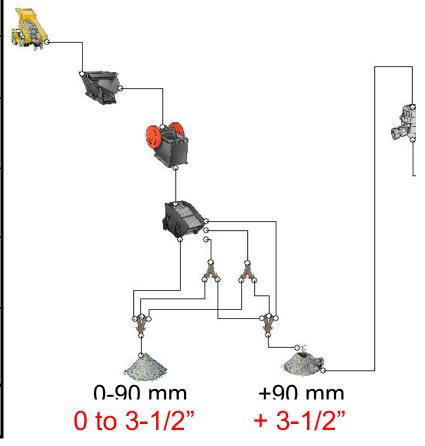
*All costs are estimates based on publicly available data


Crushing and Screening Plant Setup and Conditions for the Study

0 to 3-1/2" + 3-1/2"

Crushing and Screening Performed Measurements

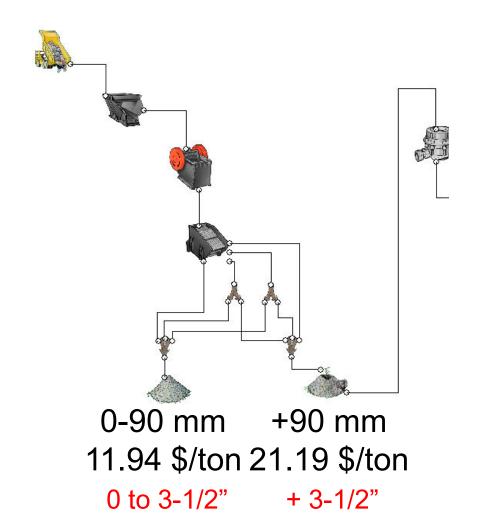
Crushing and Screening Cost* analysis


	None el.	None el.	EPD
	norm. PF	high PF	norm. PF
Power Draw (kWh/ton)	0.3	0.25	0.35
Energy Cost (0.30 \$/kWh)	0.09	0.07	0.10
Fixed Cost [\$/h]	746	746	746
[\$/ton]	2.41	2.29	2.28
Cost [\$/ton]	2.50	2.36	2.38
Sum incl D&B	1.20+1.50+2.50=	1.38+1.42+2.36=	1.49+1.43+2.38=
och L&H [\$/ton]	= 5.20	= 5.16	= 5.30

*All costs are estimates and are publicly available

Production Total cost sek/h

	None el. norm. PF	None el. high PF	EPD norm. PF
Production rate [tph]	298	316	313
Production rate 0-90 mm [tph]	186	206	189
Cost 0-90 mm [\$/ton]	5.20	5.16	5.30
Production rate +90 mm [tph]	112	110	124
Cost +90 [\$/ton]	7.44	7.40	7.54
(+2.24 \$/ton)			
Cost [\$/h]	1600	1676	1723



Distribution between 0-3.5 and +3.5 is partly controlled by the blasting result

Procution Product Price*

Fraction [mm]	Price [\$/ton]	Crushing stage	Ave. Price [\$/ton]
0-90	11.94	1 (Prim.)	11.94
0-4	19.25		
4-8	20.75		
8-11	23.73	3-4	21.19
11-16	22.53		
16-32	20.15		

*All prices are estimates based on publicly available information

Production Revenue \$/hour

	Nonel normal PF	Nonel high PF	EPD normal PF
Production [tph]	298	316	313
Production 0 - 3.5 in. [tph]	186	206	189
Price 0 - 3.5 in. \$/ton	11.94	11.94	11.94
Production +3.5 in. [tph]	112	110	124
Ave. Price +3.5 in. \$/ton	21.19	21.19	21.19
Revenue \$/h	4595	4791	4885

Summary of Cost and Revenue

	Nonel norm. PF	Nonel high PF	EPD norm. PF
Revenue [\$/h]	4595	4791	4885
Production Cost. [\$/h]	1600	1676	1723
"Gross Profit" [\$/h]	2995	3115	3162
Difference Nonel norm q [\$/h] [\$/ton]	-	120 0.38	167 0.53

Take home message:

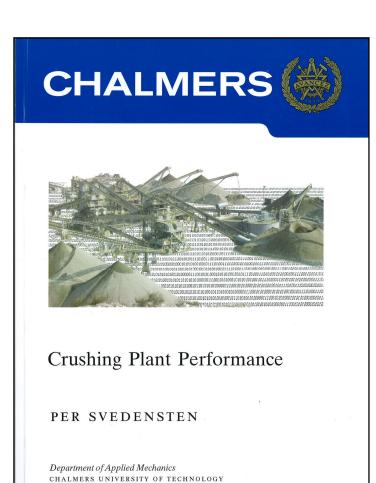
ficial Solution

Minimizing cost does not necessarily maximize profit

Conclusions

- From the tested blasting alternative Electronic Blasting System is the most beneficial.
- Extensive investigations and analysis are necessary in order to determine the optimal solution. Many areas are effected by the blasting result.
 - ✓ Drilling and Blasting
 - ✓ Bolder Management
 - ✓ Loading and Hauling
 - ✓ Crushing and Screening
- Only studying the costs is not sufficient in order to optimize the process. Most expensive solution did also generate the most profit.

What about Optimizing the Crushing and Screening Process?


- Optimizing a single crusher can be done manually as seen earlier
- Optimizing several crushers?
 - Combination of equipment setting
 - ✓ Production situation, what products are demanded and what are not?
 - ✓ Product quality

Crushing Plant Optimization

- Methods to study and evaluate crushing plant performance
- Different methods to optimize crushing plants
- Theories on crushing plant operation
- Ph.D project Design and Operation of Crushing Plants

Göteborg, Sweden 2007

Take home message: **Modelling Optimization** cannot be done Optimisation without including Simulation economics Crushing plant model Production units Customer demands Rock material **Economy**

Yield the most profitable production strategy and meet the market demand

Computer based optimization

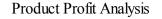
- Used for systems containing several interacting parameters.
- The goal is to find the best combination of parameter values in a simulation model.
- A cost function is used to evaluate different parameter combinations.
- The optimization routine aims to maximize or minimize the value of the cost function.
- In the crushing plant case: Maximize the gross profit.

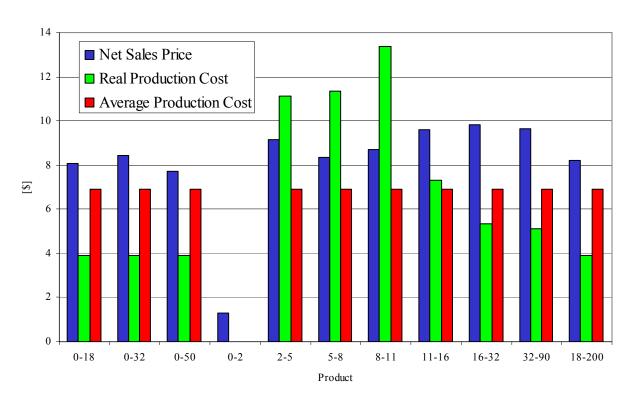
Total Cost of Ownership (TCO) and Gross Profit

- Included in cost the calculation
 - ✓ Raw material
 - ✓ Depreciation
 - ✓ Interest
 - Energy cost
 - ✓ Wear parts replacement
 - ✓ Service cost
 - ✓ By-product production
 - ✓ Personnel

- Income calculation
 - ✓ Sellable products
 - ✓ Product demand
- Other factors included that effects the gross profit
 - Availability
 - ✓ Utilization

 Goal for the optimization: Maximize the Gross Profit while producing products that fulfill the customer requirements.

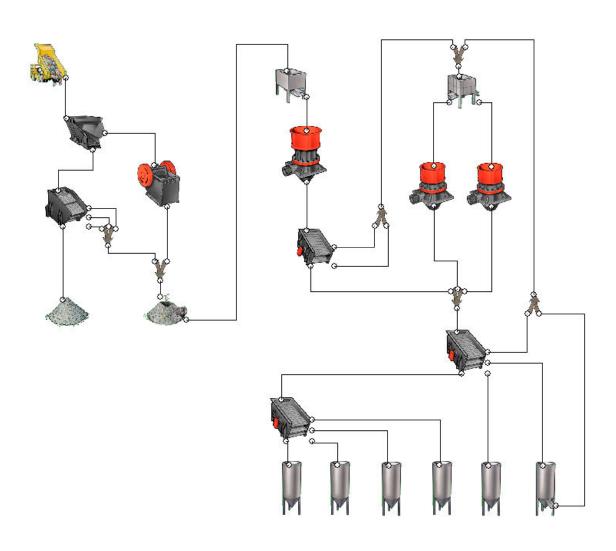

Cost* Calculation The Difference between getting it right and wrong


Using Arealiage Cost*

Threelpooliounctionst cost is summed up and divided equally

Take home message:

Finding the right level of detail is important for the economic analysis



*All prices and costs are estimates and for illustrative purpose

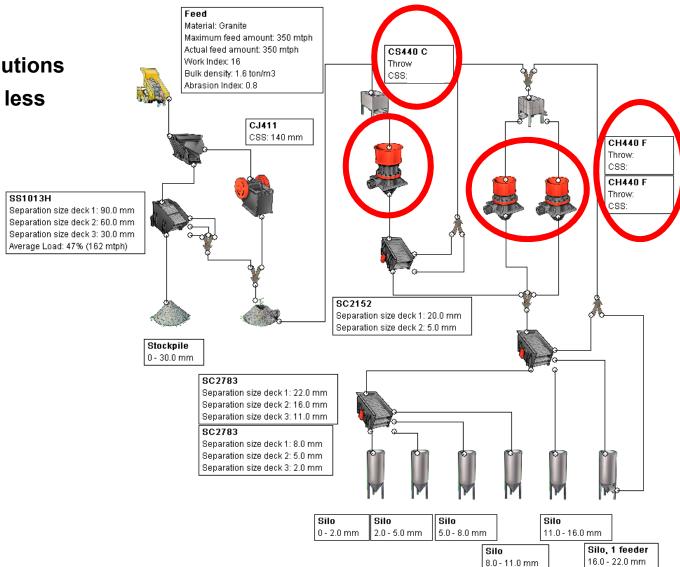
Computer Optimization Example introduction

- Granite
- Blasted material
- 350 tph
- PlantDesigner® Expert Edition

Products

Optimization 2

Optimiza	ation 1	
Product	Price*	Shape Demand
[mm]	[\$]	[FI]
0-30 Road base	14.70	-
2-4	19.70	-
4-8	21.30	<15
8-11	24.40	<15
11-16	23.10	<15
16-22	20.70	<15
0 – 2 (by-product)	-	-

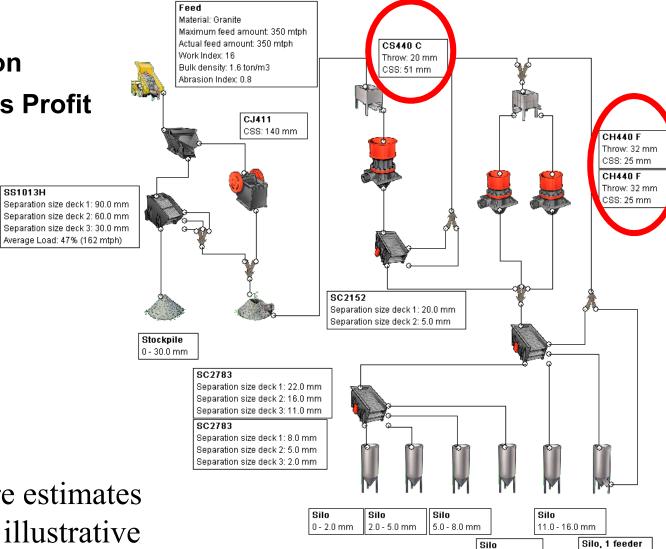


^{*}All prices are estimates and only for illustrative purpose

Optimization 1 without particle shape demands

5.9 Million different solutions

 Solved by computer in less then 2 min.



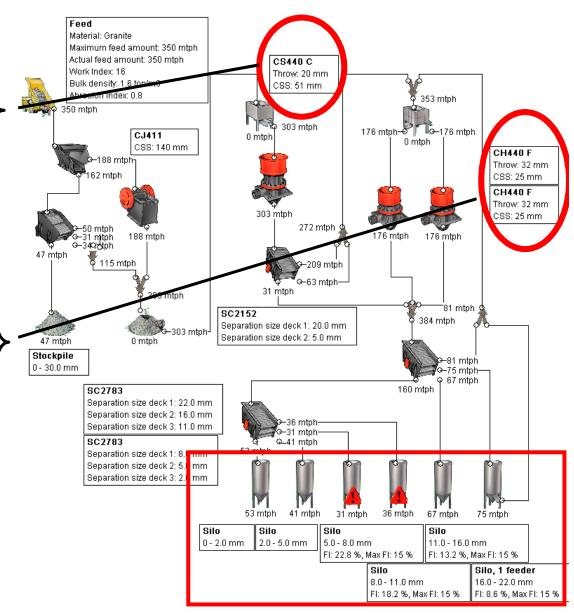
Optimization 1 without particle shape demands

After optimization

Maximized Gross Profit

16.0 - 22.0 mm

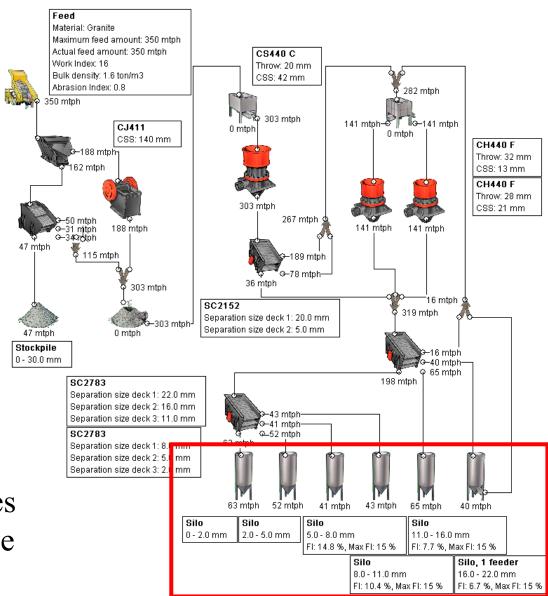
8.0 - 11.0 mm


*All costs are estimates and only for illustrative purpose

Optimization 2 with particle shape demands

Take home message:

Combined setting of equipement is important for process performance


CSS [mm]	25	13
CH440 F #2		
Throw [mm]	32	28
CSS [mm]	25	21

Optimization Comparing results

Production	Without	With
Rate	Shape	Shape
0-30	47 tph	47 tph
Road base		
2-4	41 tph	52 tph
4-8	31 tph	41 tph
8-11	36 tph	43 tph
11-16	67 tph	65 tph
16-22	75 tph	40 tph
0 – 2	53 tph	63 tph
(by-product)		

*All costs are estimates and only for illustrative purpose

Optimization Comparing results

	Without	With
	Shape	Shape
тсо	\$ 2 348 020	\$ 2 352 136
"Gross Profit"	\$ 4 484 309	\$ 4 246 857

Feed Material: Granite Maximum feed amount: 350 mtph Actual feed amount: 350 mtph CS440 C Work Index: 16 Throw: 20 mm Bulk density: 1.6 ton/m3 CSS: 51 mm Abrasion Index: 0.8 cost: 3.40 cost: 2.30 cost: 2.70 #G-cost: 3.40 CJ411 Büffer CSS: 140 mm CH440 F Throw: 32 mm cost: 2.40 CSS: 25 mm CH440 F Throw: 32 mm CSS: 25 mm cost: 3.17 G-cost: 2.50 G-cost: 2.50 G-coot: 2.50 cost: 2.83 cost: 4.10 cost: 2.50 cost: 2.50 '⊖-cost: 3.17 cost: 3.17 cost: 2.70 Tcost: 4.17 SC2152 cost: 4.03 Separation size deck 1: 20.0 mm Separation size deck 2: 5.0 mm cost: 3.37 Buffer Stockpile 0 - 30.0 mm Ø–cost: 4.17– φ cost: 4.17 cost: 4.17 SC2783 Separation size deck 1: 22.0 mm Separation size deck 2: 16.0 mm —cost: 4.47 Separation size deck 3: 11.0 mm 9-cost: 4.47 SC2783 Q-cost: 4.47 cost: 4.47 Separation size deck 1: 8.0 mm Separation size deck 2: 5.0 mm Separation size deck 3: 2.0 mm By-product cost: 5.96 cost: 6.15 cost: 6.04 cost: 5.42 cost: 5.42 Silo Silo

2.0 - 5.0 mm

5.0 - 8.0 mm

Silo

8.0 - 11.0 mm

11.0 - 16.0 mm

Silo, 1 feeder

16.0 - 22.0 mm

0 - 2.0 mm

Take home message:

Quality is not free of charge

*All costs are estimates and only for illustrative purpose

Conclusions

- Optimization must be a combination of technical and economic analysis
- Minimizing cost does not necessarily maximize profit
- Finding the right level of detail is important for the economic study
- Combined performance of different machines should be considered.

www.quarryacademy.com

Improving Processes. Instilling Expertise.

