Electronic Detonators in Vibration Control Lawrence J. Mirabelli

Improving Processes. Instilling Expertise.

Electronic Detonators in Vibration Control

 This information was extracted from a "Case Study" presented at the Twelfth Pennsylvania Drilling and Blasting Conference on November 10 & 11, 2005.

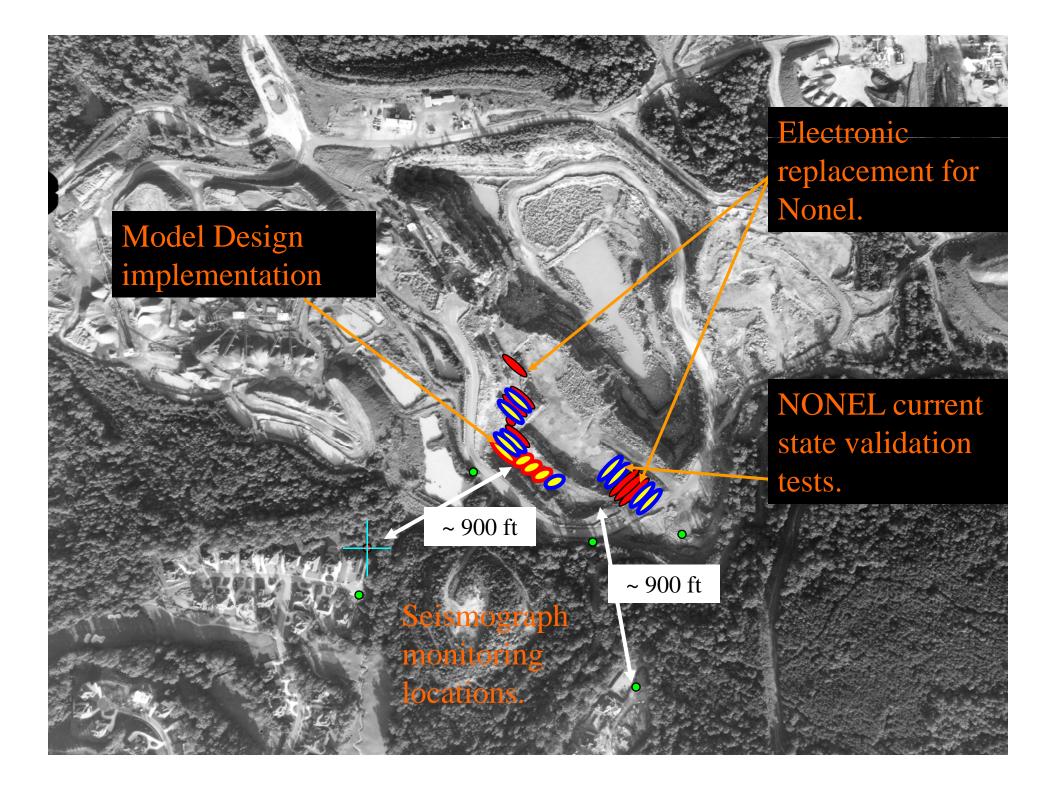
- Well established granite quarry in southeast is faced with the challenge of continuing the development of the available reserves present on their permit while an aspiring community develops around it.
- Quarry management needs to continue to maintain the strong "good neighbor" policy they have achieved while continuing to profitably develop their reserves.

Sound unique? Didn't think so!

Blast Vibration Issue

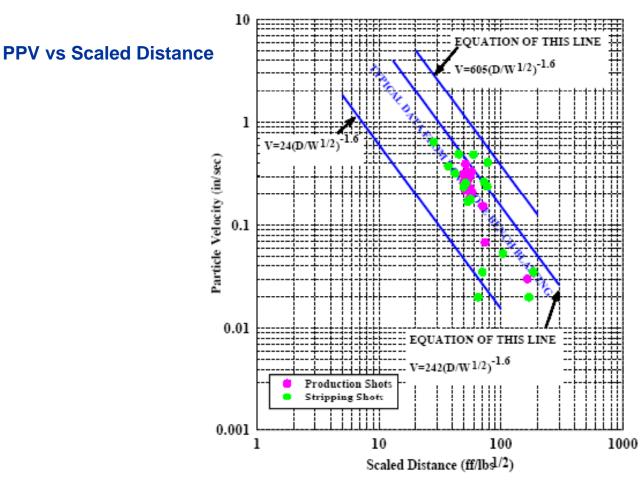
- Pit development is advancing closer to established community and communities continue to develop closer in and around the quarry. Blasting required for stripping has been done with small diameter drill holes to control vibrations and expedite excavation.
- As production blasting has progressed in the developing areas of pit, it has become obvious that better management of blast vibrations will be necessary to continue the "good neighbor" policy without inhibiting production and reducing profits.

Requirements for quantification of electronic detonator value.


• Establishment of a quantification team.

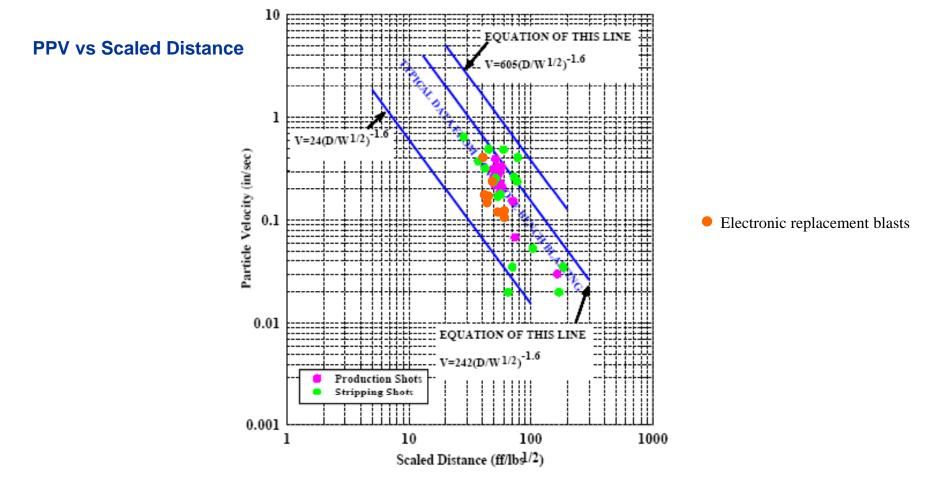
- Lead by project manager. (technically competent, experience with project management)
- Membership composed of individuals directly involved the process. (line management, blasters, quality control, equipment operators etc.)
- Coordinated effort between pit operations/production and the quantification team.
- Methodic and Deliberate plan to develop baseline information, to control implementation of change and to measure that the process remains in control.

Consistent metrics.

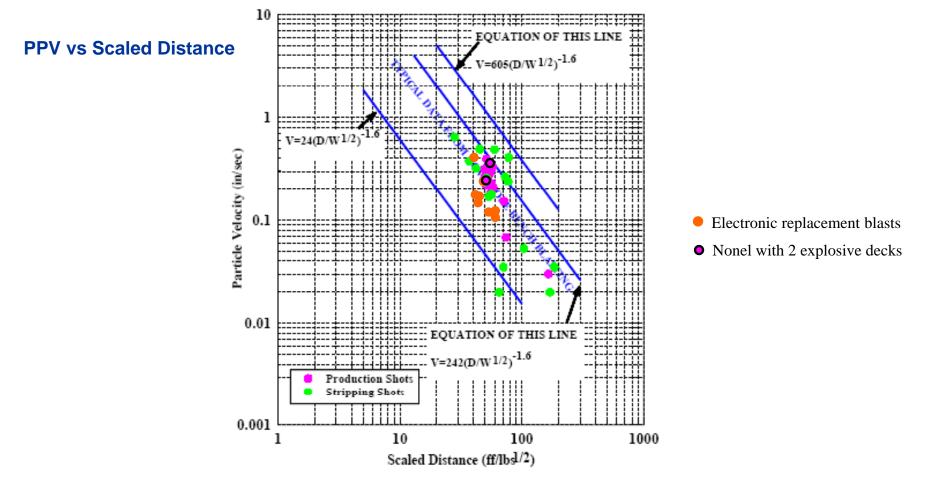


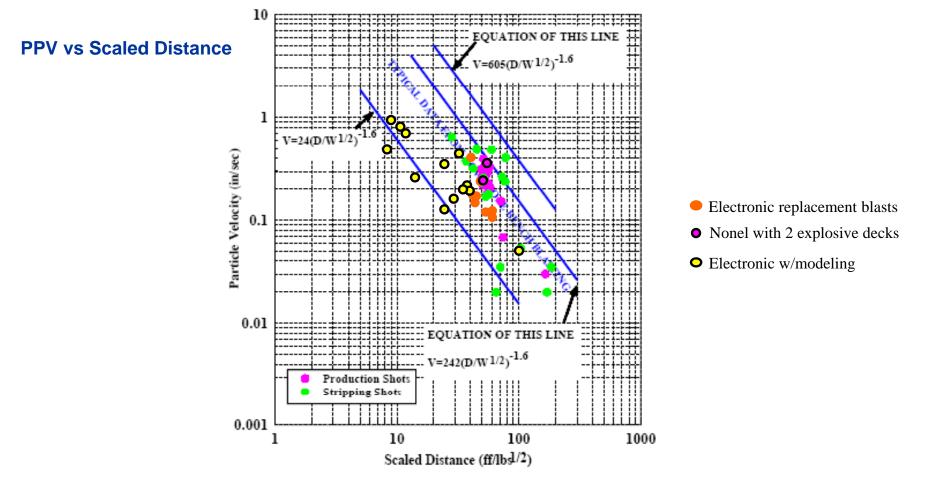
Program Summary

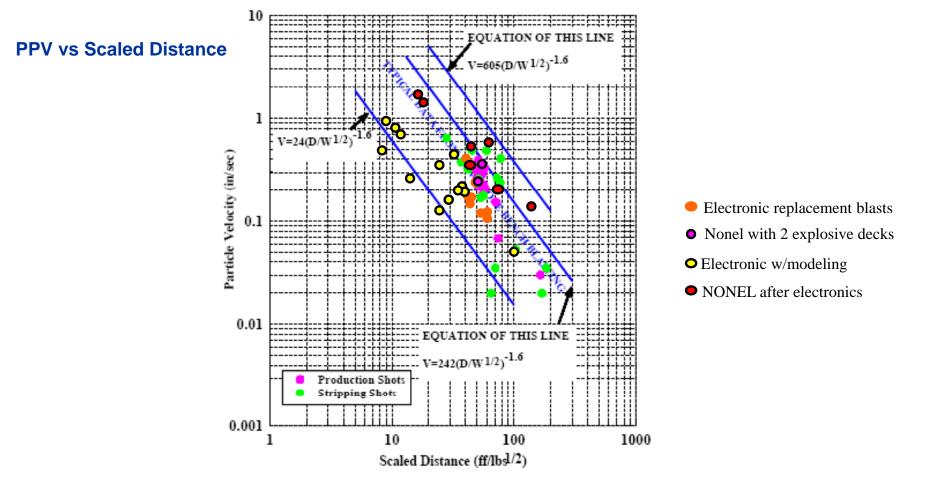
			Hole Dia.	Tons	Powder Factor			PPV	Air	
Blast #			inch	Produced	tons/lb	holes/delay	lbs/delay	ips	dB	SD
	To the Ea	ast								-
20	Nonel		5.75	19,600	1.28	1	450	0.523	128.0	47.28
19	HotShot	Model	5.75	17,220	1.27	2	910	0.345	122.0	33.2
18	HotShot	Model	5.75	22,344	1.31	2	960	0.158	122.0	30.7
17	HotShot	Model	5.75	20,580	1.44	1	490	0.198	122	40.52
	Key cut t	o the Sou	ıth							
16	HotShot	Model	5.75	11,172	1.29	1	453	0.225	126	40
15	Nonel	Decked	5.75	14,700	1.72	0.5	250	0.250	111	53.44
14	Nonel	Decked	5.75	21,168	1.4	0.5	230	0.365	118	55.65
13	HotShot	Alt time	5.75	23,534	1.25	1	480	0.403	125	40.94
12	HotShot	Alt time	5.75	574	1.28	1	445	0.163	108	53.52
	To the So	outh								
11	HotShot	Alt time	5.75	13,524	1.22	1	485	0.173	124	44.78
10	Nonel		5	15,120	1.08	1	395	0.288	116	50.5
9	HotShot	Alt time	5.75	24,108	1.36	1	432	0.275	123	50.0
8	HotShot	Alt time	5.75	18,662	1.26	1	477	0.175	123	45.5
	To the Ea	ast with R	amp to Nor	th						
7	Nonel		5.75	20,202	1.29	1	455	0.310	127	47.0
6	Nonel		5.75	20,290	1.3	1	500	0.235	122	66.1
5	HotShot	Alt time	5.75	18,368	1.34	1	427	0.118	129	65.5
4	HotShot	Alt time	5.75	20,412	1.21	1	490	0.140	123	59.6
3	HotShot		5.75	22,344	1.28	1	490	0.138	123	57.2
2	Nonel		5.75	18,088	1.4	1	485	0.123	126	57.5
1	Nonel		5.75	17,556	1.18	1	485	0.148	120	57.5

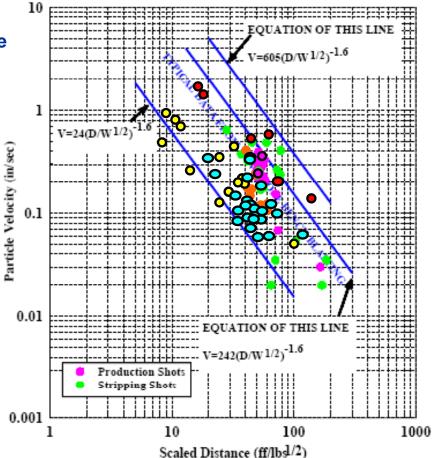


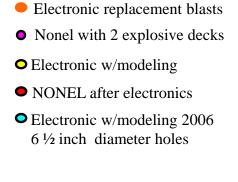
Historical Production blasts are all used 5 ³/₄ inch diameter holes. Stripping Shots used 4 inch diameter holes.





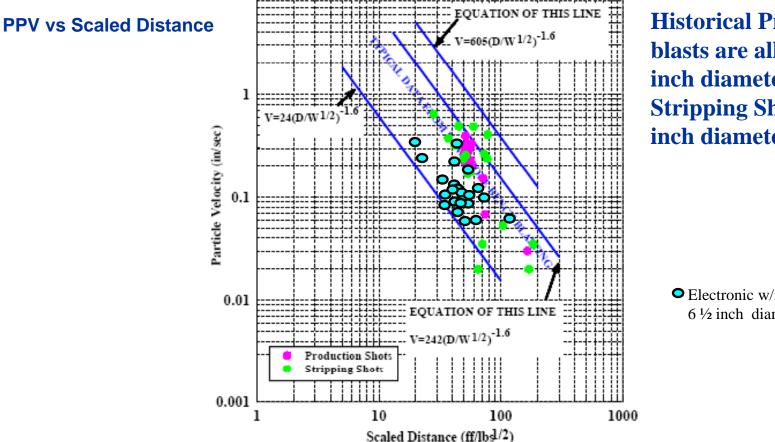






PPV vs Scaled Distance

Considering the results attained with electronics in the quarry development area to the southeast. Hole diameter was able to be increased for quarry development to the northeast!



10

Historical Production blasts are all used 5 ³/₄ inch diameter holes. **Stripping Shots used 4** inch diameter holes.

• Electronic w/modeling 2006 $6\frac{1}{2}$ inch diameter holes

What are the obstacles to implementation of a cost effective explosive technology change like electronic detonators?

Difficulty seeing value past line item costs.

- ✓ Install metrics to identify real value.
- Natural "human" resistance to change
 - Be innovative. Strive to do it better tomorrow. Look beyond the: "we tried that before and it did not work attitude!"
- Natural fear of breaking the "old rules" that we have survived on for years.
 - Use models to test new designs. Think "out of the box!".
 Remember that with electronics you need no longer be bounded by conventional delay times.
 - Always use best explosive engineering judgment to evaluate and select realistic model outputs before attempting implementation!

www.quarryacademy.com

Improving Processes. Instilling Expertise.

