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Agenda for drilling operations

� well planned operations and correctly selected rigs  yield low cost drilling

� technically good drilling (good drill settings) and  correctly selected drill steel
yields low cost drilling

� straight hole drilling yields safe and low cost D&B  operations



The most common drilling methods in use
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Drilling consists of a working system of:

■ bit
■ drill string
■ boom or mast mounted feed
■ TH or DTH - hammer

Rotary - thrust
■ drill string rotation and

stabilising systems
■ powerpack
■ automation package
■ drilling control system(s)
■ collaring position and 

feed alignment systems
■ flushing (air, water or foam)
■ dedusting equipment
■ sampling device(s)



Case study – Singrauli Coal Mine, India 

■ Rock Overburden sandstone
■ Drill rig P1524 / HL1560 / chain feed
■ Tubes ST68 threads / Ø96mm / 2 x 12’ SP
■ Bits 6” Retrac

■ Bit penetration rate 367 ft/ph  =  6.13 
ft/min
■ Feed ratio 90 bar / 150 bar  =  0.60

■ bit service life 18,620’
■ shank service life 11,770’ / 62,745’ / 
84,720’
■ tube shank service life 4,465’ / 16,585’ / 
36,680’

Shoulder 
strike

Bottom 
strike

Guide plate 
for tubes



Mechanics of percussive drilling

Percussive drilling

 Down-the-hole, DTH
Stress waves transmitted directly through bit into rock

 Tophammer
Stress wave energy transmitted through shank, rods,  
bit, and then into rock

Basic functions

 percussion - reciprocating piston used to produce
stress waves to power rock indentation

 feed - provide bit-rock contact at impact

 rotation - provide bit impact indexing

 flushing - cuttings removal from hole bottom

 foam flushing - drill-hole wall stabilisation

FEED

PERCUSSION

CUTTINGS

FLUSHING

ROTATION



How rock breaks by indentation
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ubit

Vcuttings
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Chip formation by bit indentation and 

button indexing

Spray paint applied 
between bit impacts

Chipping around 
button footprint

Button footprint

Ø76mm / 3”

Direction of 
bit rotation



How flushing works along the drill string

Lift force F lift =   1/2 · ρair · vair 
2 · Aparticle · cv 

vair =   Q / A

cv =   0.3  for spheres

Gravity G      =   ρparticle · Vparticle · g

Flift

G

Return air velocity profile:
- highest along hole wall
- lowest along drill string



Flushing of drill-cuttings

Insufficient air  <  50 ft/s

� low bit penetration rates

� poor percussion dynamics
� interupt drilling to clean holes
� plugged bit flushing holes
� stuck drill steel
� ”circulating” big chip wear

Too much air  >  100 ft/s

� excessive drill steel wear

� erosion of hole collar
� extra dust emissions
� increased fuel consumption

Correction factors

� high density rock

� badly fractured rock
(air lost in fractures
- use water or foam to
mud up hole walls)

� high altitude
(low density air)

���� large chips

Flift

G

Flift

G



Collar erosion – stabilisation

With water injection (or foam)
� cleaner collars
� no loose stones
� holes easy to charge

No water injection
� loose stones can make holes

“unchargeable” – requiring redrilling
� problems increase with water saturation

and thickness of prior sub-drill zone
� drill-hole deviation starts with poor

collaring  



Foam flushing – an aid for drilling in caving 

material
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Indentation with multiple chipping

Drop in button force 
indicates elastically 

stored energy in rock 
released by chipping

chipping while on-loading

chipping after off-loading

k1 =  30 kN/mm for on-loading 

k2 =  112.5 kN/mm for off-loading

γ =  k1 / k2 =  0.27



Energy transfer efficiency η related to

rock chipping

η =  Wrock / Wincident

=  ηimpedance · ( 1 – γ )

ηimpedance-max ≈ 0.90

No energy retained in rock after off-loading for γ = 1.0
(all elastic energy in rock returned to drill strin g)
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How does this apply to practical drilling?

“Poor” drilling situation
- chipping after off-loading
- potential for severely reduced drill steel life
- correct choice of bit design and size?
- sufficient bit regrinding (resharpening)?

“Good” drilling situation
- chipping during on-loading
- potential to achieve max drill steel service life
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Energy transfer efficiency η related to impedance 
matching between bit and drill steel forces

ubutton

Fbit

1

k1 = indentation resistance of bit (kN/mm)

ηηηη impedance

k1

Feed

2 · LpistonLpiston



How do we study energy transfer issues?

� strain gauge measurements on rods/tubes while drill ing

� on-line stress waves measurements by lasers

� numerical modelling

=>  the tell-tale items we are looking for:
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Energy transfer chain

- video clip cases

cavity

bit face bottoming – caused by:

■ drilling with too high impact energy
■ drilling with worn bits i.e. buttons with too low p rotrusion

bit / rock gap – i.e. underfeed

“perfect” bit / rock match



Energy transmission efficiencies are 

divided into:

←←←← Tensile wave

Compressive wave  →→→→
���� energy transmission through the drill string

- optimum when the cross section throughout 
the drill string is constant

- length of stress wave
- weight of bit

���� energy transmission to rock
- bit indentation resistance – k 1
- bit-rock contact

The most critical issue in controlling stress waves  is to avoid high tensile reflection waves.

Tensile stresses are transmitted through couplings by the thread surfaces - not through
the bottom or shoulder contact as in the case for c ompressive waves.

High surface stresses combined with micro-sliding r esult in high coupling temperatures
and heavy wear of threads.



Feed force requirements

From a drilling point of view From a mechanical poin t of view

- to provide bit-rock contact - compensate piston motion

- to provide rotation resistance - compensate linear momentum
so as to keep threads tight of stress waves in rods
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Ranger DX700 and 800 / Pantera DP1500

vgauge (ft/s)
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vgauge =  ππππ d · RPM / ( 60·1000 )

R7002 / Poclain / Ø76 mm / MF-T45 / Otava

R700 / Ø76 mm / MF-T45 / Toijala

R700 / Ø70-89 mm / MF-T45 / Croatia

R8002 / HL800T / Ø76 mm / MF-T45 / Savonlinna

P1500 / Ø152 mm / MF-GT65 / Myllypuro

P1500 / Ø127 mm / MF-GT60 / Baxter-Calif.

70

HL800T +  
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MR450



Summary of drill settings - TH

� higher percussion pressure =>  penetration rates inc rease proportionally with percussion power
=>  more drill steel breakage if …
=>  deviation increases with percussion energy

� feed ratio ( P feed / Ppercussion )
=>  ratio controls average feed levels
=>  UF reduces drill steel life (heats up threads)
=>  OF increases deviation (especially bending)

� higher rotation pressure =>  tightens threads (open threads reduce drill steel life)
=>  increases with OF
=>  increases with drill string bending

� higher bit RPM =>  increases gauge button wear (espe cially in abrasive rocks)
=>  increases indexing of button footprints on dril l hole bottom
=>  straighter holes
=>  higher thread temperatures

� bits =>  select bits with regard to penetration rates, h ole straightness,
stabile drilling (percussion dynamics), price, …

=>  bit condition / regrind intervals / damage to r ock drill



Summary of TH percussion dynamics
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Selecting drilling tools

� bit face and skirt design

� button shape, size and carbide grade

� shanks, rods, tubes, …

� grinding equipment and its location



Guidelines for selecting cemented carbide 

grades

� avoid excessive button wear (rapid wearflat develop ment)
=>  select a more wear resistant carbide grade or d rop RPM

� avoid button failures (due to snakeskin development  or too aggressive button shapes )
=>  select a less wear resistant or tougher carbide  grade or spherical buttons
=>  use shorter regrind intervals

PCD ?48 DP65



Selecting button shapes and cemented 

carbide grades

R48

Robust ballistic buttons
48

S65

Spherical buttons
DP65



Optimum bit / rod diameter 

relationship  for TH

Thread           Diameter Diameter Optimum
coupling bit size

R32 ∅∅∅∅44mm ∅∅∅∅32mm ∅∅∅∅51-2”
T35 ∅∅∅∅48 ∅∅∅∅39 ∅∅∅∅57-2¼”
T38 ∅∅∅∅55 ∅∅∅∅39 ∅∅∅∅64-2½”
T45 ∅∅∅∅63 ∅∅∅∅46 ∅∅∅∅76-3”
T51 ∅∅∅∅71 ∅∅∅∅52 ∅∅∅∅89-3½”
GT60        ∅∅∅∅82  ∅∅∅∅60 ∅∅∅∅92-3.62”
GT60        ∅∅∅∅85  ∅∅∅∅60/64 ∅∅∅∅102-4”



Optimum bit / guide or pilot (lead) tube 

relationship for TH

Thread           Diameter Diameter Optimum
coupling bit size

T38 ∅∅∅∅55mm ∅∅∅∅56mm ∅∅∅∅64-2½”
T45 ∅∅∅∅63 ∅∅∅∅65 ∅∅∅∅76-3”
T51 ∅∅∅∅71 ∅∅∅∅76 ∅∅∅∅89-3½”
GT60        ∅∅∅∅85  ∅∅∅∅87 ∅∅∅∅102-4”
GT60        ∅∅∅∅85  ∅∅∅∅102 ∅∅∅∅115-4½”



Trendlines for bit service life
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Relationship between SJ and VHNR

� rock surface hardness, VHNR

� rock surface hardness, SJ

Vickers Hardness Number Rock, VHNR
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Bit regind intervals, bit service life 

and over-drilling
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Example of drill steel followup for MF-T51
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MF-T51 rods
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Jobsite KPI’s for drill steel

� drill steel component life

� bit regrind intervals

� bit replacement diameters

� component discard analysis

� cost in $ per dr-ft or yd 3
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