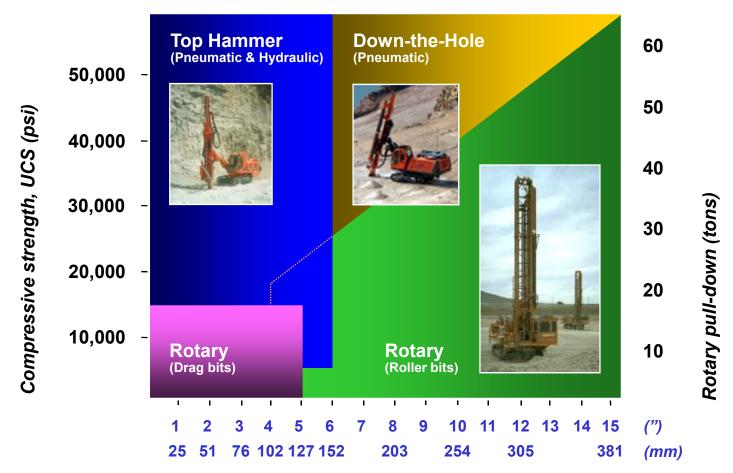
Drilling Applications Arne Lislerud – Bill Hissem

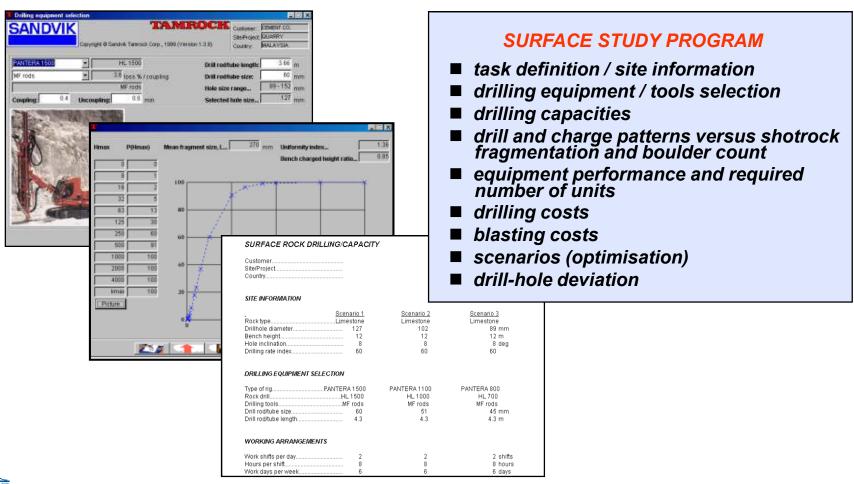
Improving Processes. Instilling Expertise.

Agenda

- well planned operations and correctly selected rigs yields low cost drilling
- technically good drilling and correctly selected drill steel yields low cost drilling operations
- straight hole drilling yields safe and low cost D&B operations

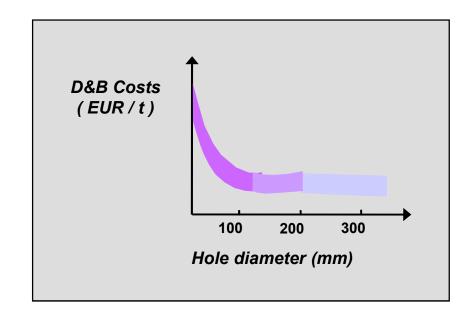

Drilling consists of a working system of:

- bit
- drill string
- boom or mast mounted feed
- TH or DTH hammer Rotary - thrust
- drill string rotation and stabilising systems
- drilling control system(s)
- collaring position and feed alignment systems
- flushing (air, water or foam)
- dedusting equipment



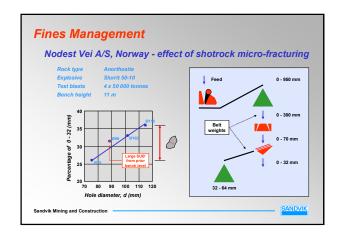
The most common drilling methods in use

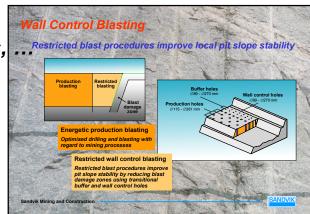
Simulation tools - Study programs



Criteria for selecting drills

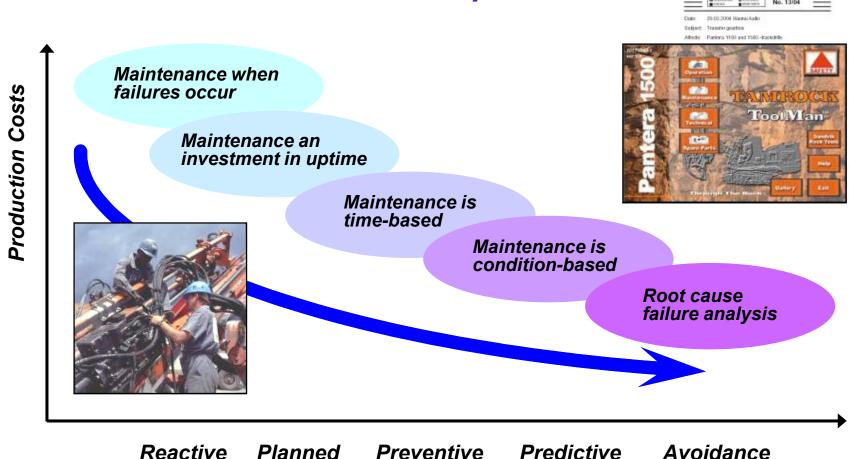
- annual production requirements in bm³ or t
- critical diameter of explosive
- flexibility in usage
- application costing
- level of automation
- operator startup training
- operator comfort and safety
- ease of transport between pits


- => number of drills
- => hole size big enough?
- => different types of work?
- => D&B costs per bm3 or t


Quarries and D&B Contractors

- equipment flexibility and reliability
- blast to aggregate production requirements
- ability to handle difficult ground conditions
- availability of local / on-call field service

Mines and Mining Contractors

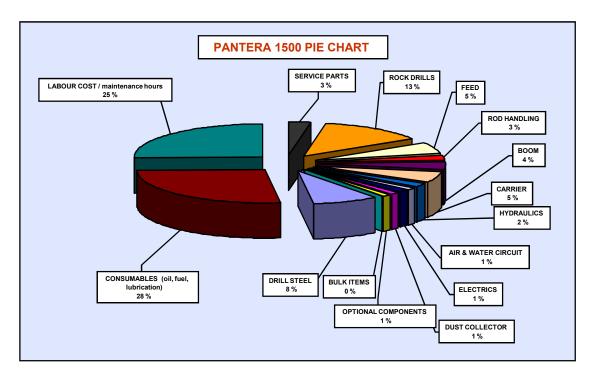

- wall control blasting (plus dewatering, depressurisation and bolting holes)
- grade control (sampling, MWD, ...)
- system for tracking consumables, engine hours,
- inpit remote controlled / automated drills
- availability of service contracts

Fleet Management


Levels of fleet maintenance response

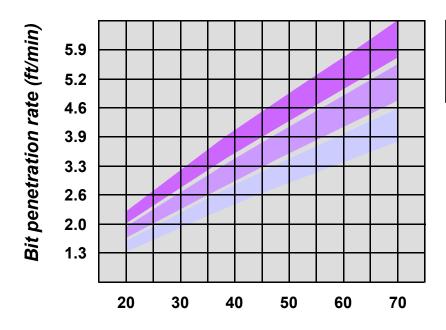
Fleet Management

Machine Lifecycle Operating Costs, MLOC



Fleet Management

Machine Lifecycle Operating Costs, MLOC

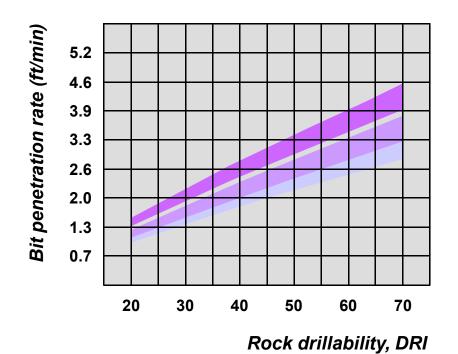

MLOC provides a tool which will guide a person without intimate knowledge of conditions and maintenance procedures to generate realistic estimates of operational costs for equipment in specific conditions

TH - predicting bit penetration rates (ft/min)

- rock mass drillability, DRI
- percussion power level in rod(s)
- bit diameter
 - ✓ hole wall confinement of gauge buttons
- goodness of hole-bottom chipping
 - ✓ bit face design and insert types
 - ✓ drilling parameter settings (RPM, feed)
- flushing medium and return flow velocity

Rock	drillabilit	y, DR
------	-------------	-------

HL510/HLX5T	51 mm	2"
HL600	64 mm	2.5"
HL710/800T	76 mm	3"
HL1500/1560T	102 mm	4"


HL510/HLX5T	64 mm	2.5"
HL600	76 mm	3"
HL710/800T	89 mm	3.5"
HL1000	89 mm	3.5"
HL1500/1560T	115 mm	4.5"

HL510/HLX5T	76 mm	3"
HL600	89 mm	3.5"
HL710/800T	102 mm	4"
HL1000	115 mm	4.5"
HL1500/1560T	127 mm	5"

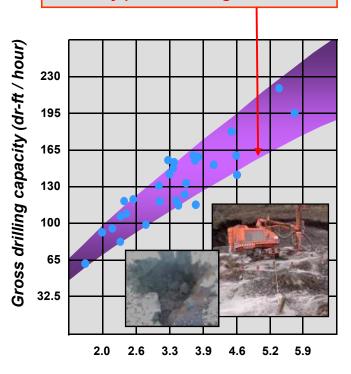
DTH - predicting bit penetration rates (ft/min)

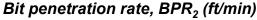
- rock mass drillability, DRI
- **■** percussion power of hammer
- bit diameter
 - ✓ hole wall confinement of gauge buttons
- goodness of hole-bottom chipping
 - ✓ bit face design and insert types
 - ✓ drilling parameter settings (RPM, feed)
- flushing and return flow velocity

M50 / M55	140 mm	5.5"
M60 / M65	165 mm	6.5"

M30	89 mm	3.5"
M40	115 mm	4.5"
M60 / M65	203 mm	8"

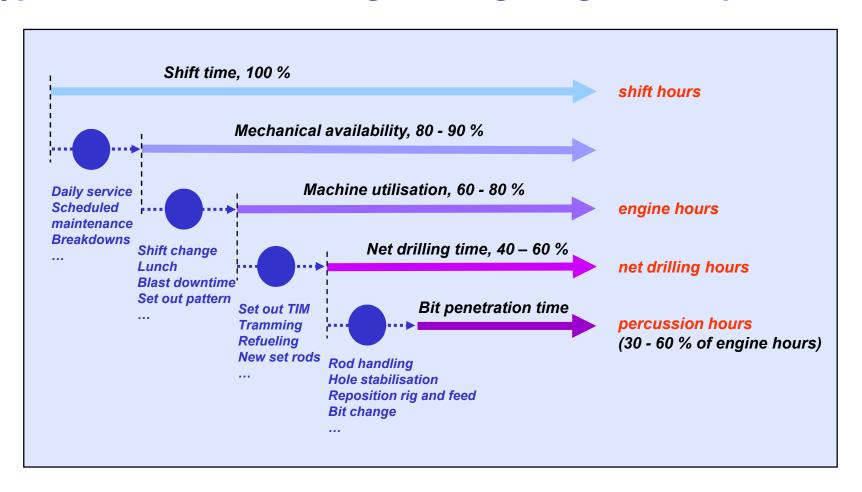
Gross drilling capacities (dr-ft/shift)


- rig setup and feed alignment time per drill-hole
- collaring time through overburden or sub-drill zone
- drill-hole wall stabilisation time (if required)
- rod handling times (unit time and rod count)
- bit penetration rate loss percentage i.e.


✓ rods and couplings
 ✓ MF rods
 ✓ tubes
 6.1 % per rod
 3.6 % per rod
 2.6 % per tube

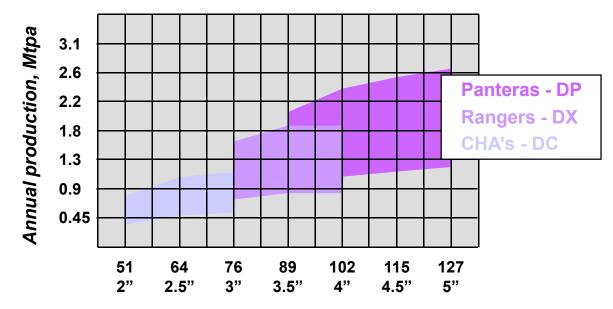
- effect of percussion power levels on:
 - ✓ bit penetration rates
 - ✓ drill steel service life
 - ✓ drill-hole straightness
- rig tramming times between benches, refueling, etc.
- effect of operator work environment on effective work hours per shift
- rig availability, service availability, service and maintenance intervals

Poor net drilling capacities for:


- ✓ very broken rock
- ✓ terrain benches winching
- ✓ very low or very high benches
- ✓ very poor collaring conditions

Typical breakdown of long term rig usage and capacities

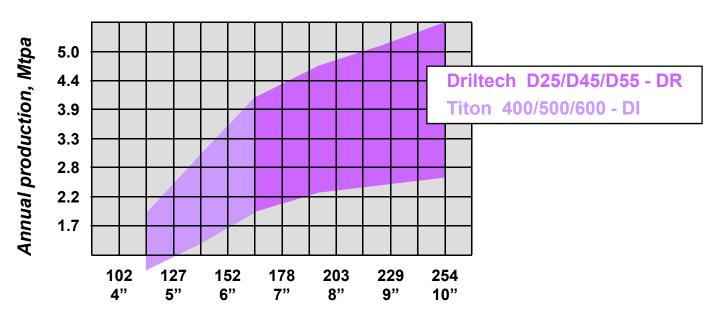
TH - annual drill rig production capacities


■ shifts per year 225 = $5 \frac{d}{w} \cdot 45 \frac{w}{a}$

■ shift hours per year $1800 = 8 h/d \cdot 5 d/w \cdot 45 w/a$

■ engine hours per year 1224 = 1800 · 68 % utilisation

■ rock density, g/cm³ 2.7


DTH - annual drill rig production capacities

■ shifts per year 225 = $5 \frac{d}{w} \cdot 45 \frac{w}{a}$

■ shift hours per year $1800 = 8 h/d \cdot 5 d/w \cdot 45 w/a$

■ engine hours per year 1224 = 1800 · 68 % utilisation

■ rock density, g/cm³ 2.7

Drill-hole size, mm

Drilling operational items and objectives

- drill patterns as per blasting supervisors specs
- site preparation and procedures for:
 - ✓ removal or drilling through prior sub-drill zone
 - **✓** marking of collaring positions
 - ✓ drill-hole alignment
 - ✓ minimising drill-hole deflection
 - ✓ drill-hole depth control
- selection of percussion power level and other drilling parameters
- selection of drill steel, bit regrinding procedures and consumption followup
- scheduled equipment service and maintenance
- production reporting and work documentation for Quality Assurance
 - ✓ shift, weekly reports, ...
 - ✓ drilling deviation reports
- **■** for contractors rapid rig relocation to new jobsites

Prior bench level subdrill zone removed

Site preparation

Drill-hole positioning, alignment and levelling

Drilling through overburden with foam flushing

Drilling after removing overburden

Drill-hole monitoring & documentation

Water tank for special drilling conditions

Bit regrinding

Field service

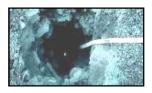
Refueling

Utility wagon

Transport to new jobsite

Good drilling practices

Setup & Collaring


Drilling

Drill steel selection

Drill-hole deviation

- ✓ lock oscillation cylinders, use rear jack (not lift rig), firmly push feed-pin into ground and keep retaining centralizer closed while drilling
- ✓ if the marked collaring point is in a bad spot (sloping surface, sinkholes, etc.) it is then better to collar on the side and adjust feed alignment to correspond to the targeted drill-hole bottom
- ✓ have a plentiful supply and use shothole plugs to avoid rocks falling into shotholes
- ✓ avoid drilling with hot couplings adjust feed pressure or bit RPMs or change bit model
- ✓ change drill rods before threads are totally worn out use thread wear gauges
- ✓ ensure that sufficient flushing is available especially when drilling with large bits
- ✓ check that drilling is carried out with optimum bit RPMs with regard to button wear rates
- ✓ if the drill string bends while drilling align feed to drill string so as to reduce the adverse effects of excessive drill string bending on hole straightness
- ✓ avoid excessive rattling against the hole-bottom and retaining centralizer when loosening threads (typically only 10 - 20 seconds)
- ✓ select bit type according to rock mass conditions e.g. retrac in broken ground, big front flushing hole(s) in weathered rock/mud seams, spherical buttons in hard and abrasive rock types, etc.
- ✓ select bits, drill rods/guide tubes according to service life or hole straightness requirements
- ✓ avoid excessive loss of bit diameter when regrinding especially when using hand held grinders
- ✓ in non-abrasive rocks such as limestone, dolomite, etc. it can be advantageous to adopt frequent "touch-up" regrinds at the rig in stead of traditional regrinding procedures to remove snakeskin on button wearflats and wearflat edges
- ✓ excessive drill-hole deviation reduces drill steel life typically caused by bit deflection when drilling through shears and mud seams
- ✓ rod breakage is reduced when using rods with loose couplings when compared to MF rods
- ✓ lower a flashlight to check drill-hole deflection depth as a rough rating of hole straightness

Drilling in difficult (rock mass) conditions

Prior sub-drill zone

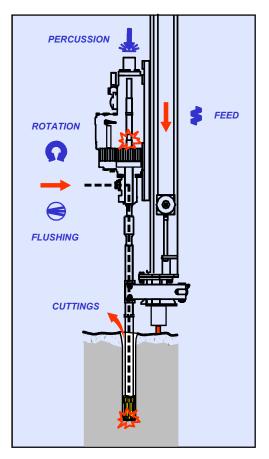
Very jointed rock

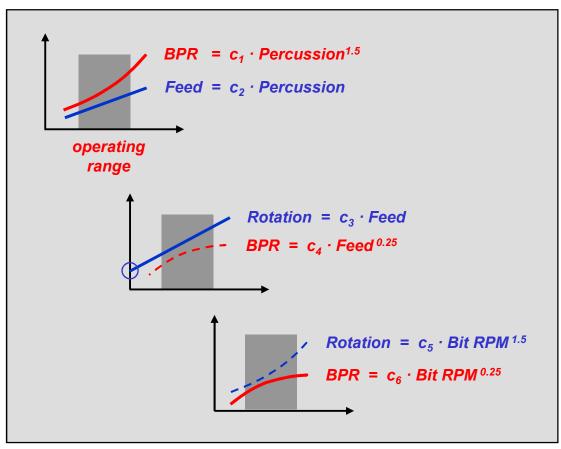
- ✓ stabilize drill-hole walls in the prior sub-drill zone with water added to the flushing air
- ✓ drill through the prior sub-drill zone with reduced percussion power and feed force. Adjust the flushing flow to a minimum so as to reduce return-air erosion around the collaring point
- ✓ if drill-hole walls tend to collapse stabilise walls with additives such as Quik-Trol, EZ-Mud, ...
- ✓ use straight hole drill steel selection guidelines to minimise drill string deflection
- ✓ use retrac type bits and back-hammering to ease drill string extraction
- ✓ use power extractor if required to retrieve drill string
- ✓ adjust drilling parameter settings frequently to match drilling in varying geological conditions

Soft or weathered rock

✓ increase bit RPMs or use X-bits to increase bit resistance to indentation. This improves the percussion energy transfer efficiency ratio and reduces the feed force requirement - and reduces the problem of opening tight threads

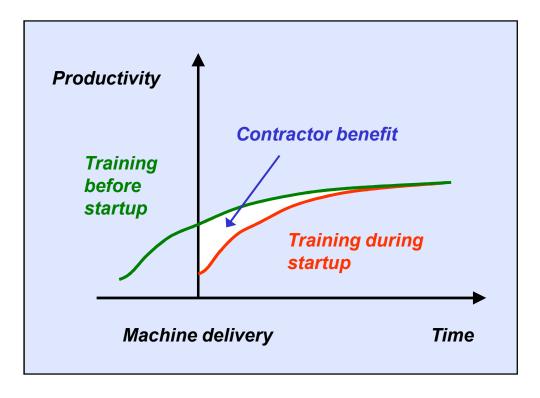
Mud seams and shears





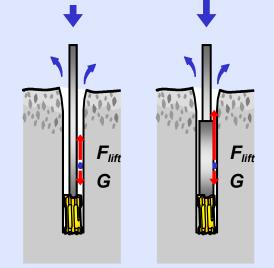
- ✓ use bits with big front flushing hole(s) to reduce the occurrence of bits getting stuck and the anti-iamming mechanism triggering in too often
- ✓ flushing control automatics recommended it retracts the drill string when the flush flow is close to zero (adjustable set-point)
- ✓ do not retract the drill string too fast when drilling in mud so as to avoid the collapse of holes by this "vacuum" effect
- ✓ avoid high return-air velocities by reducing the flushing flow when drilling in water filled holes so as to avoid the added water erosion effect on drill-hole walls and the collaring point
- ✓ use "ZeroDust™" to avoid releasing dust into the air when the dust collector empties. "ZeroDust™" also reduces the amount of airborne dust after blasting.

Relationships bwtween BPR and drill settings - TH



Simulation tools – Operator training for DPi

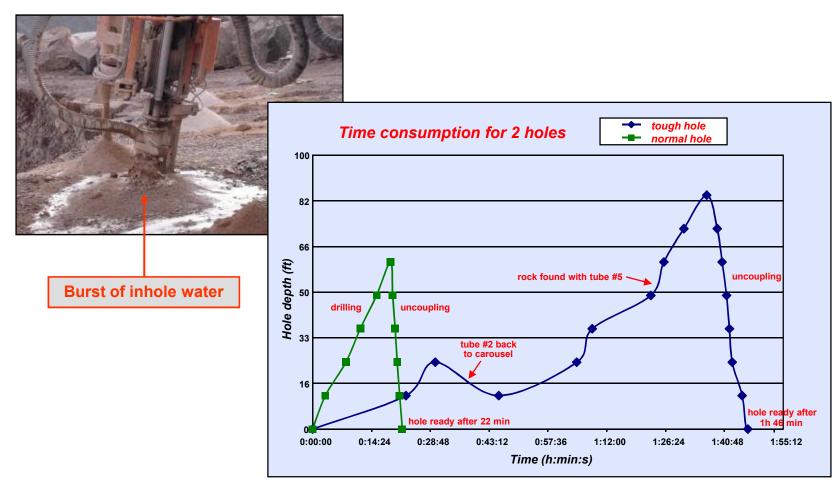
Flushing of drill-cuttings


Insufficient air < 50 ft/s

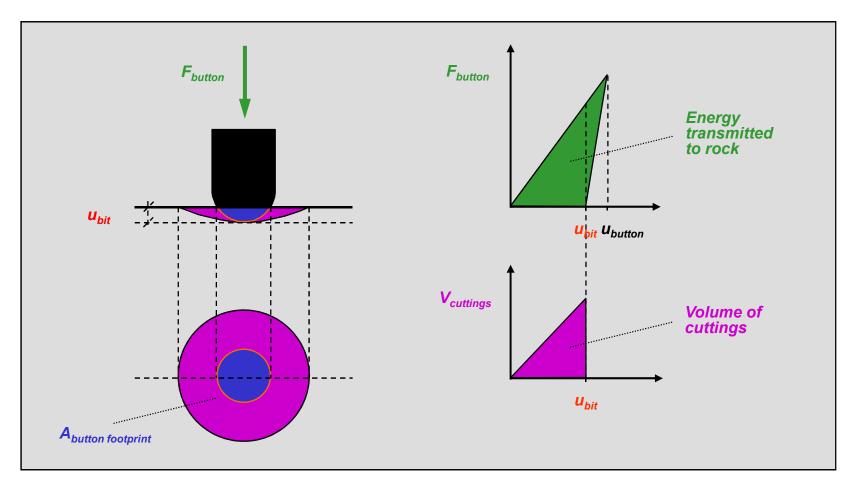
- low bit penetration rates
- **■** poor percussion dynamics
- interupt drilling to clean holes
- plugged bit flushing holes
- stuck drill steel
- "circulating" big chip wear

Too much air > 100 ft/s

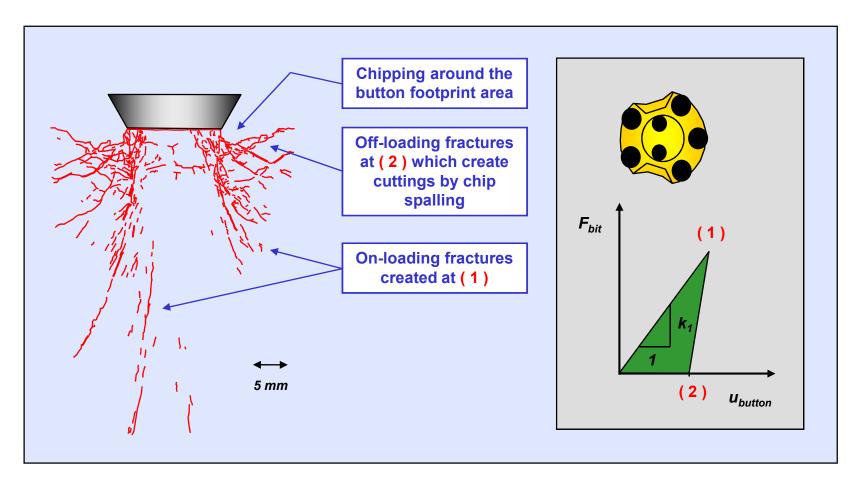
- excessive drill steel wear
- erosion of hole collaring point
- extra dust emissions
- increased fuel consumption


Correction factors

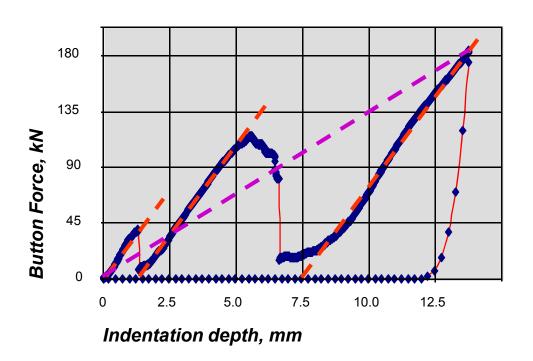
- high density rock
- badly fractured rock (air lost in fractures - use water or foam to mud up hole walls)
- high altitude (low density air)
- large chips



Foam flushing – an aid for drilling in caving material

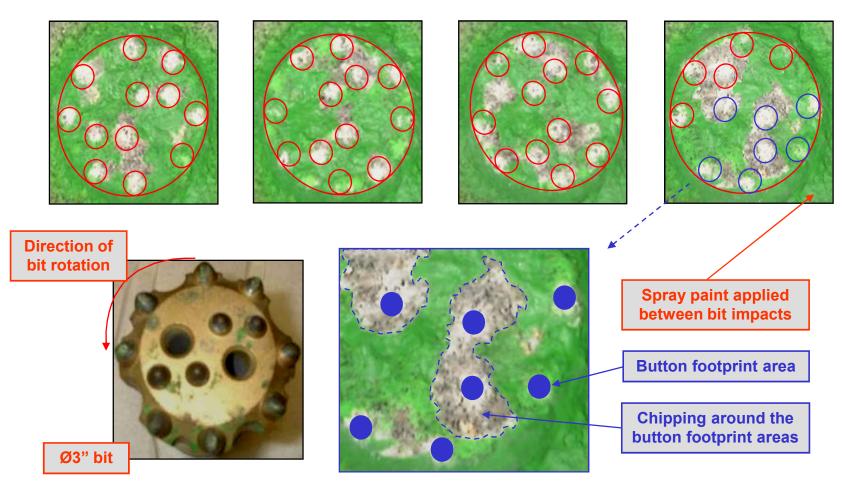


How rocks break in drilling



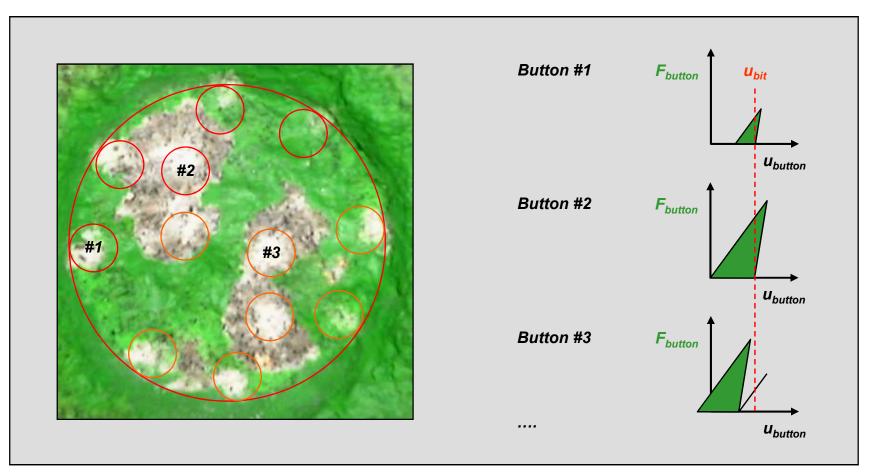
Button indentation, chip formation and bit force

Full depth button indentation and chipping frequency

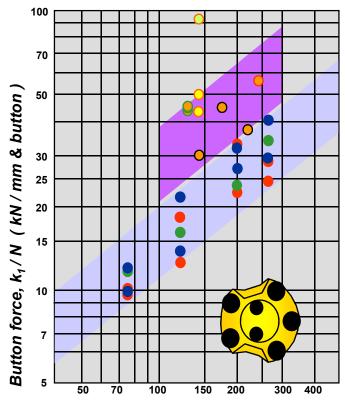


 $- - - k_1 = 30 \text{ kN/mm for individual chip formations}$

- - k_1 = 13 kN/mm for full depth indentation



Chip formation by bit indentation and indexing

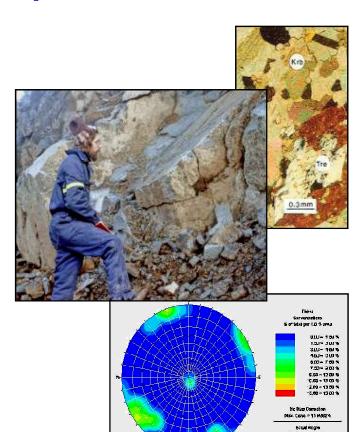

Hole bottom breakage / button and bit indentation forces

Button force versus rock strength, UCS

- dynamic, Ø11mm spherical buttons
- dynamic, Ø10mm spherical buttons
- <u>dynamic</u>, Ø9mm spherical buttons
- static, Ø9mm spherical buttons
- static, Ø11mm spherical buttons
- static, Ø12mm spherical buttons

Uniaxial compressive strength, UCS (MPa)

Components of rock mass workability


- bit penetration rates (BPR ratio 1:10)
 - ✓ precussive drilling rock drillability related to specific energy
 - ✓ rotary drilling rock drillability related to the axial tool force required for a unit depth of cut (or specific energy)
- rock abrasivity and tool service life (bit service life ratio 1:200)
 - ✓ related to interaction between wear materials, rock surface hardness and tool usage
- magnitude of drill-hole deviation (ratio 1:10)
 - ✓ related to interaction between bit, drill string and rock mass while drilling
- rock mass blastability (ratio 1:5)
 - ✓ drill patterns and powder factors related to mean fragment size k_{50}
 - ✓ wall stability, backbreak, ...
- rock crushability (ratio 1:4)
 - ✓ crushability related to specific energy

Traditional testing of rock mass properties

■ atomic scale

- ✓ chemical analysis and XRF for element and molecular content determination
- microscopic scale
 - ✓ thin section and XRD for mineral content
- macroscopic scale
 - ✓ laboratory testing of intact rock specimens:
 - strength properties, drillability, blastability, abrasivity, crushability, ...
- rock mass scale
 - ✓ representability of selected intact rock specimens for laboratory testing
 - ✓ mapping of rock mass discontinuities:
 - fracture set orientation and properties (strike, dip, frequency, aperature, ...)

Use of production followup data

- **■** brown field projects (ongoing sites)
 - **✓** predict NPR from current equipment performance
 - ✓ predict drill steel service life from current performance
- **■** green field projects (virgin sites)
 - ✓ predict NPR from rock drillability
 - ✓ predict drill steel service life from rock abrasivity
- **■** benchmarking of new products

What is the average drillability and blastability for this bench?

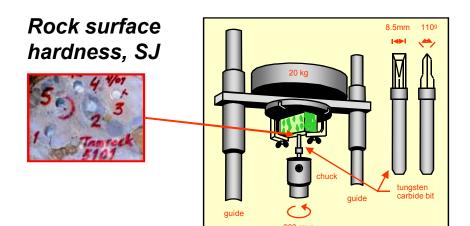
Practical rock sampling for drillability

Sample weight 20 - 30 lbs

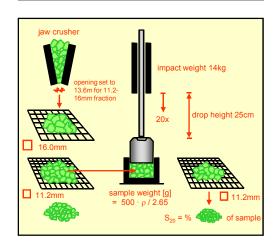
Min. thickness

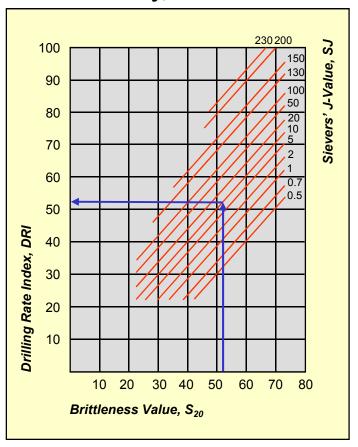
Rock samples should be typical for the drilling site with regard to: Note

Worksite, mine level, nearest town, province, Additional info


country

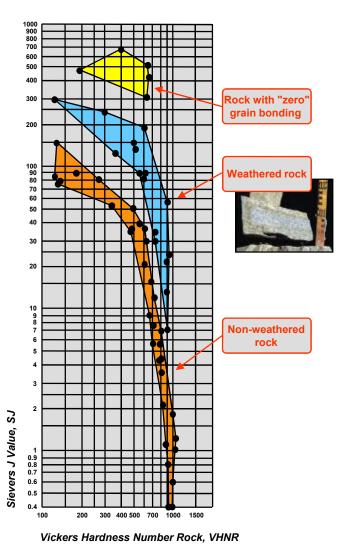
(Relevant drilling parameters and results)




Drilling Rate Index, DRI

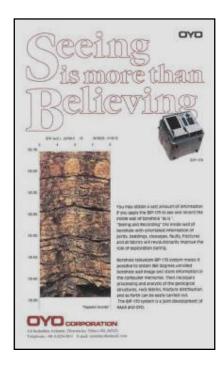
Rock toughness, S₂₀

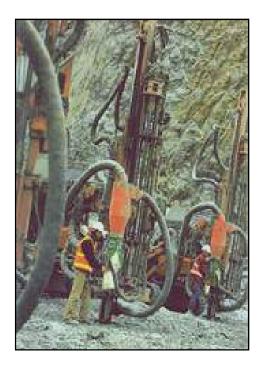
Rock drillability, DRI



DRI drillability test result evaluation

- Drilling Rate Index versus UCS
- detect weathered samples (SJ / VHNR chart)

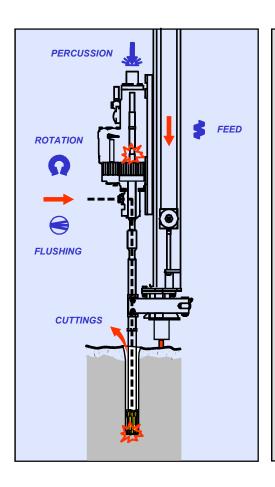




Geologic Considerations in Quarrying

In situ testing of rock mass properties

- inhole video surveys of shotholes
- sampling of cuttings for chemical analysis
- measurement-while-drilling or MWD basis for digital pit mapping

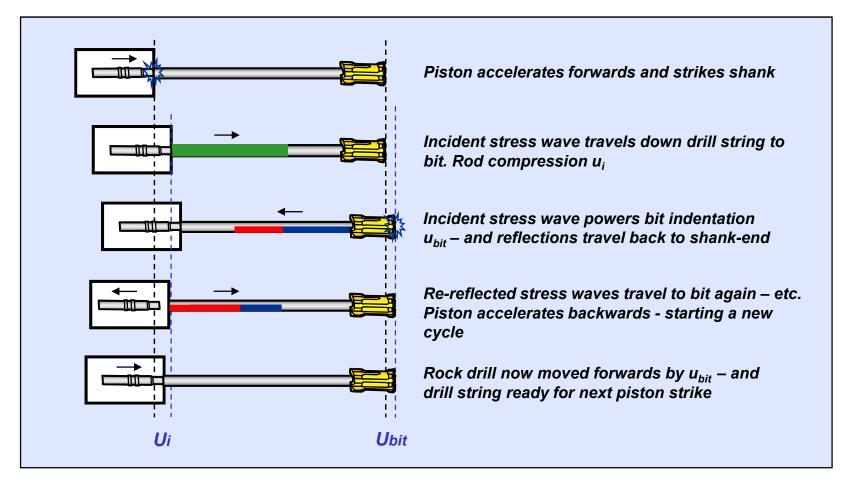


Mechanics of percussive drilling

Percussive drilling

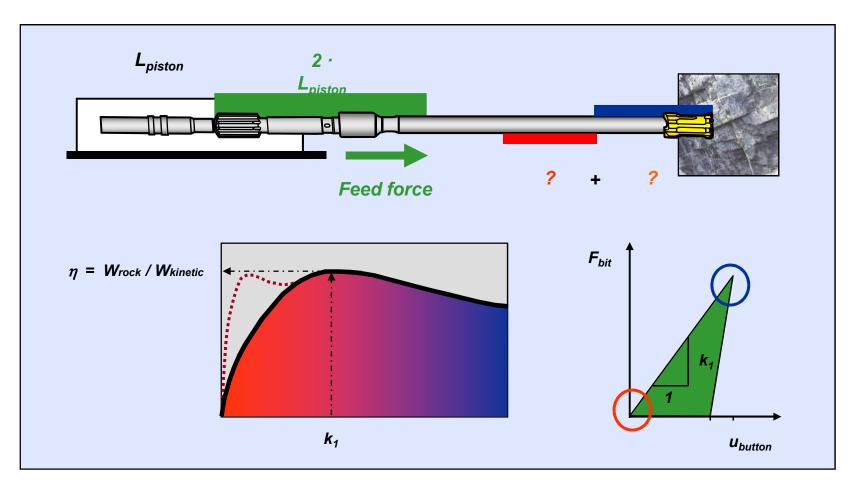
- ✓ Down-the-hole, DTH

 Stress waves transmitted directly through bit into rock
- ✓ Tophammer

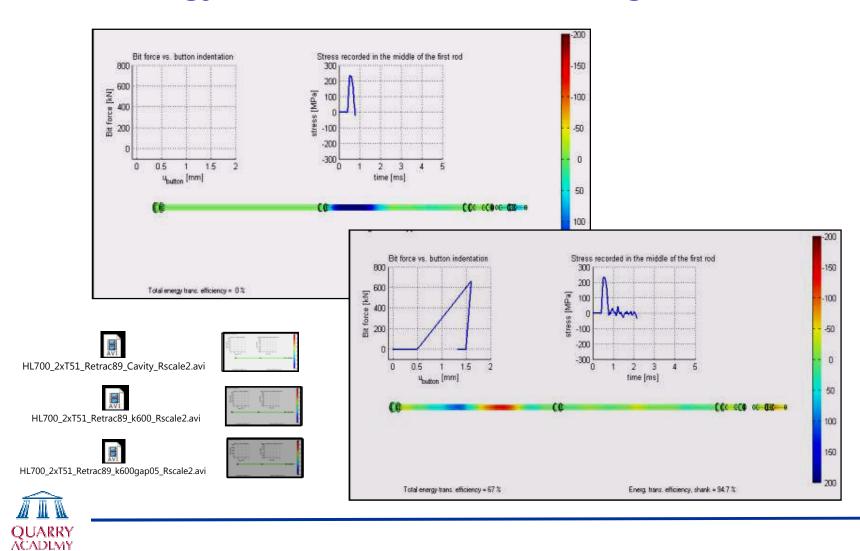

 Stress wave energy transmitted through shank, rods, bit and then into rock

Basic functions

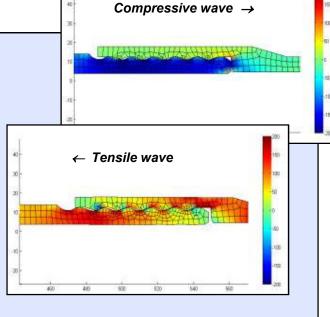
- ✓ percussion reciprocating piston used to produce stress waves to power rock indentation
- ✓ feed provide bit-rock contact during impacts
- ✓ rotation provide bit indexing
- ✓ flushing cuttings removal from hole bottom
- √ foam flushing drill-hole wall stabilisation



Percussive impact cycle in TH drilling



Energy transfer efficiency in TH drilling


The energy transfer chain in TH drilling

About stress wave energy transmission

Energy transfer efficiencies can be divided into:

- energy transmission through the drill string
 - optimum when the cross section throughout the drill string is constant
 - length of stress wave
 - weight of bit
- energy transmission to rock
 - bit indentation resistance k₁
 - bit-rock contact

The most critical issue in controlling stress waves is to avoid high tensile reflection waves.

Tensile stresses are transmitted through couplings by the thread surfaces - not through the bottom or shoulder contact as in the case for compressive waves.

High surface stresses combined with micro-sliding result in high coupling temperatures and heavy wear of threads.

Feed force requirements

From a drilling point of view From a mechanical point of view - to provide bit-rock contact - compensate piston motion - to provide rotation resistance - compensate linear momentum so as to keep threads tight of stress waves in rods Rod force Feed force Stress waves in rod (MPa) Piston movement (mm)

Feed force level characterisation - TH

Underfeed

Rereflected tensile waves pull shank forwards – creating first a gap and thereby moving piston strike point forwards – resulting in:

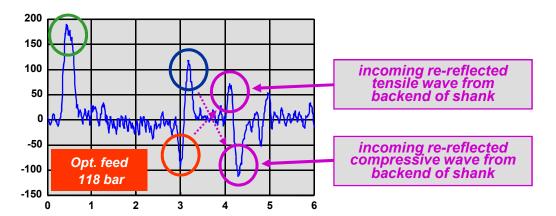
- high tensile stresses => low drill steel life
- low rotation pressure => threads run open and wear out rapidly

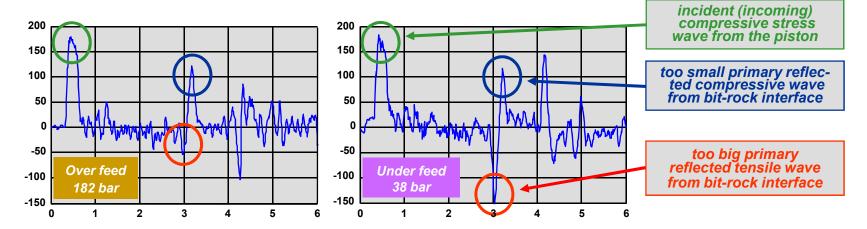
Optimum feed

Optimum feed is a given force level high enough to avoid underfeed. Feed over this limit is considered as overfeed.

Overfeed

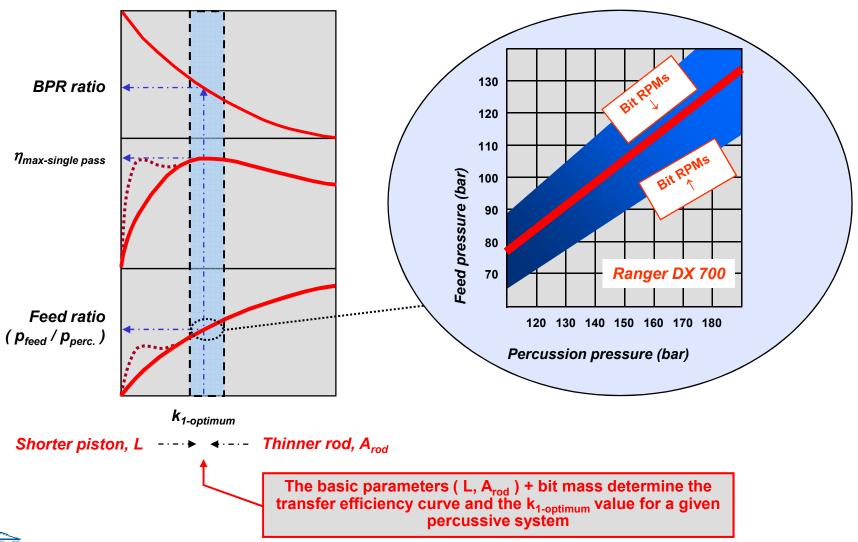
Rereflected compressive waves push shank and rock drill backwards – creating jerky rock drill movements – resulting in:

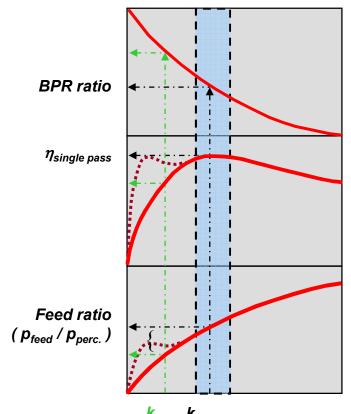

- drill steel bending => drill-hole deviation
- high rotation pressure => threads very hard to open
- high friction at bit face => increased button wear

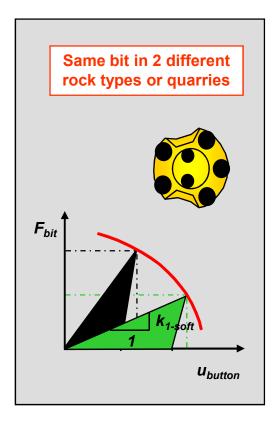


Reflected stress wave response in rods to feed force levels

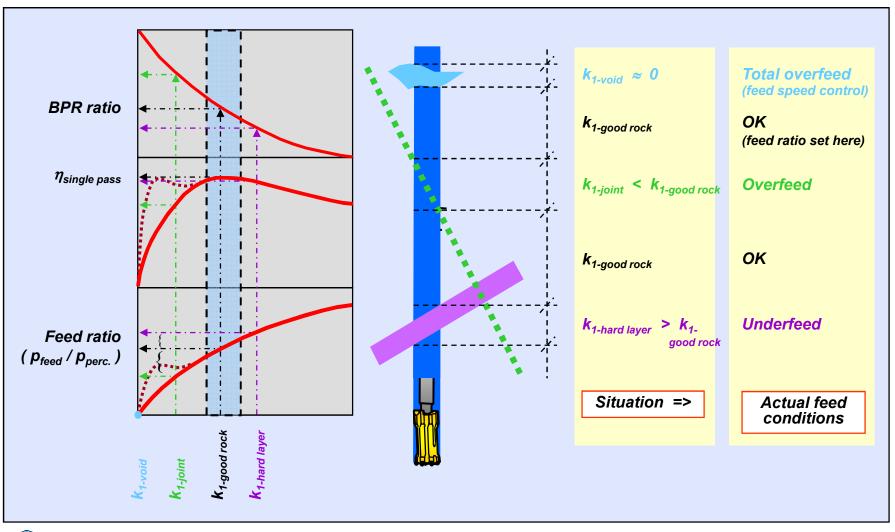
HL700 / CF145 2 x MF-T45-14' ⊘76mm @ 120RPM


Stress axis in MPa
Time axis in milliseconds



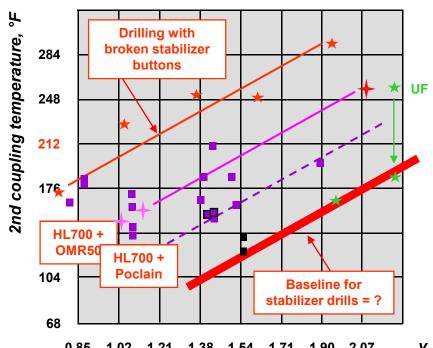

Energy transfer efficiencies and feed force requirements - TH

Matching site drilling to transfer efficiency curve - TH



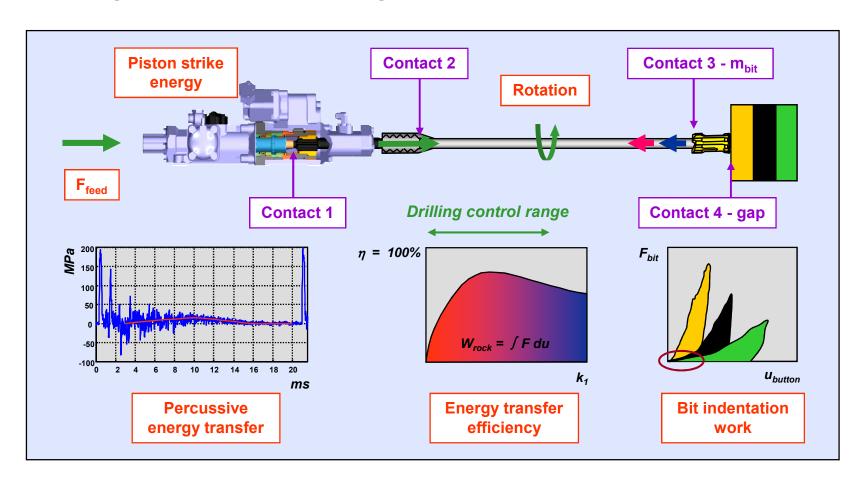
Rock hardness ---- ←--- Chipping frequency

Button count and size ----
(and bit size)



Drilling Management Drilling in variable rock mass

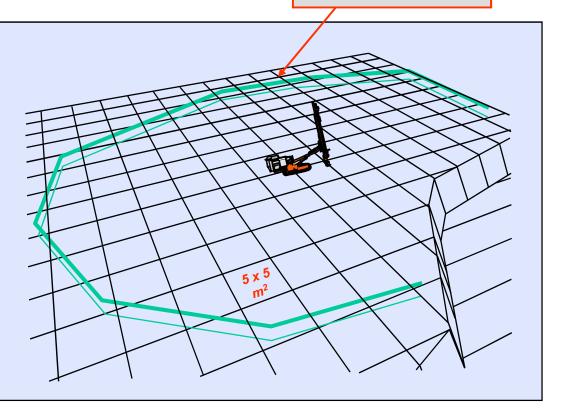
Ranger DX 700 and 800 / Pantera DP1500


- R700² / Poclain / Ø76 mm / MF-T45 / Otava
- 🔶 R700 / Ø76 mm / MF-T45 / Toijala
- R700 / Ø70-89 mm / MF-T45 / Croatia
- R800² / HL800T / Ø76 mm / MF-T45 / Savonlinna
- ★ P1500 / Ø152 mm / MF-GT65 / Myllypuro
- ★ P1500 / Ø127 mm / MF-GT60 / Calif.

 $v_{gauge} = \pi d \cdot RPM / (60 \cdot 1000)$

0.85	1.02	1.21	1.38	1.54	1.71	1.90	2.07	v _{gauge} (ft/s)
66	79	92	105	118	132	145	158	RPM for Ø76 mm / 3"
56	67	79	90	101	112	125	135	RPM for Ø89 mm / 3½
49	59	69	78	88	98	108	118	RPM for Ø102 mm /4"
39	47	55	63	71	79	87	95	RPM for Ø127 mm / 5'
33	39	46	53	59	66	72	79	RPM for Ø152 mm / 6'

Summary of percussion dynamics - TH



Drilling noise levels - TH

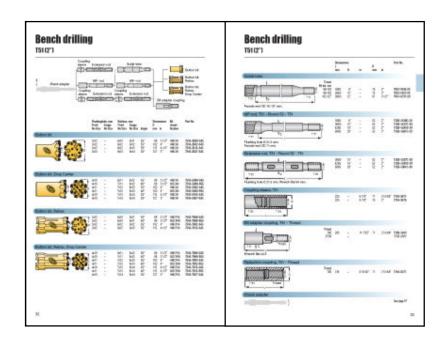
ISO 4872	
$L_{WA} dB(A)$	
125.7	
123.8	
124.2	
126	
127	

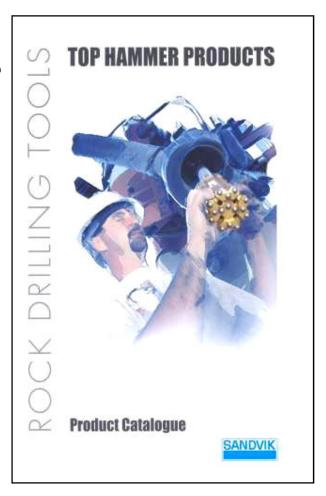
85 dB(A) boundary for CHA 660

Feed casing reduces noise levels by approx. 10 dB(A)

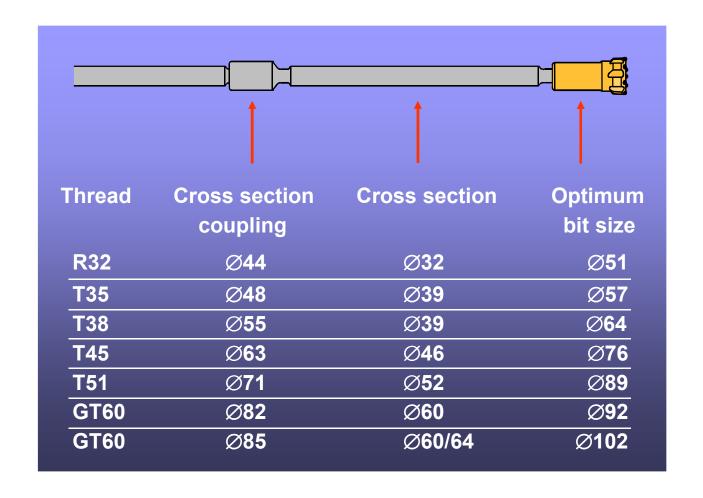
Safety issues of inpit operations

- pit planning and operations supervision
- safety consciousness of workforce
- operator hazard training
 - => minimum occurrence of accidents


Premature ignition of electric detonators and blast due to lightning

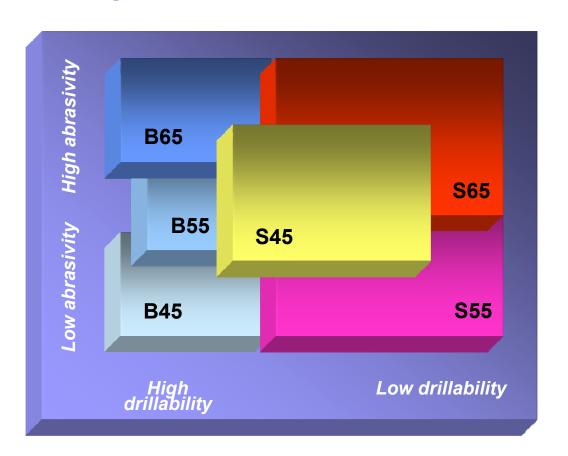


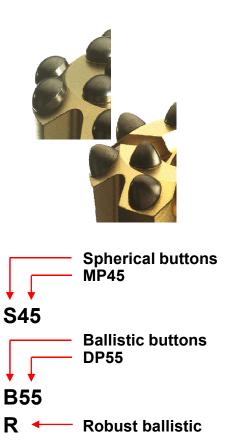
Selecting drilling tools - TH


- bit face and skirt design
- button shape, size and cemented carbide grade
- drill string components
- grinding equipment and its location at jobsite

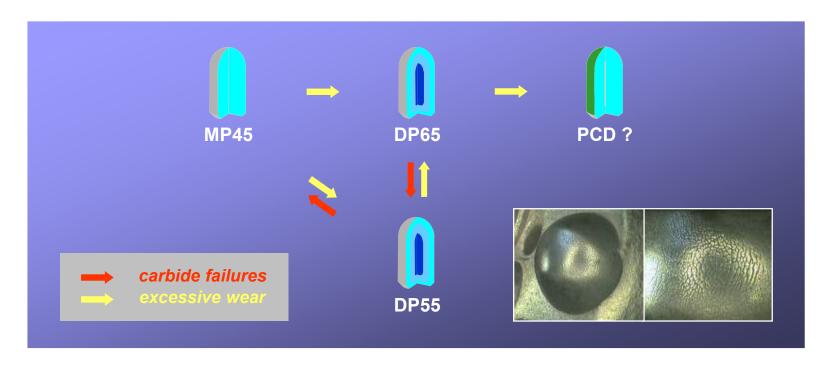


Optimum bit / rod diameter relationship - TH

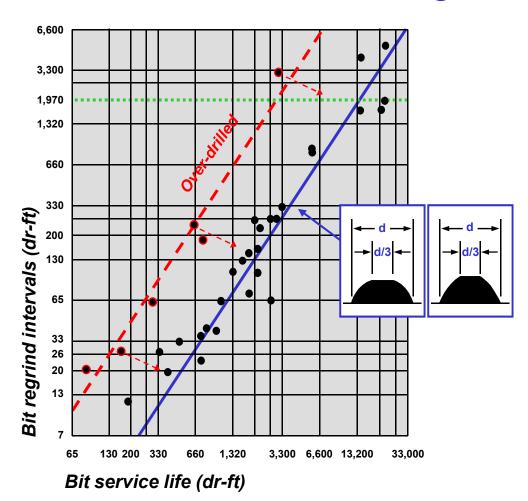



Optimum bit / guide or pilot (lead) tube relationship - TH

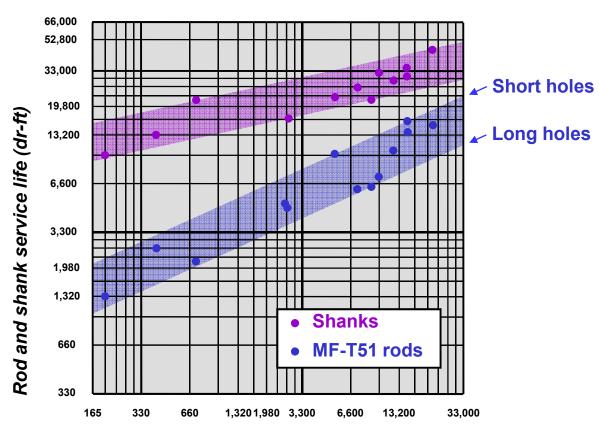
Selecting button shapes and cemented carbide grades



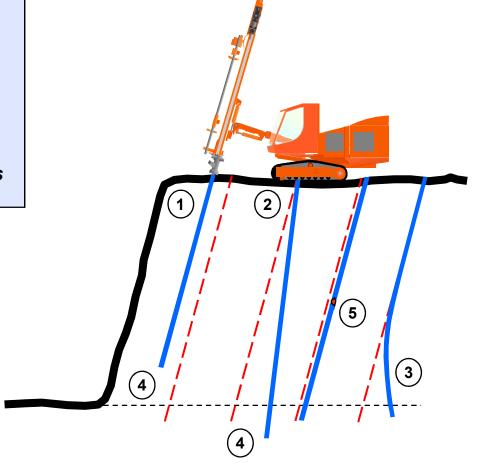
Guidelines for selecting cemented carbide grades


- avoid excessive button wear (rapid wearflat development)
 - => select a more wear resistant carbide grade
- avoid button failures (due to snakeskin development or too aggressive button shapes)
 - => select a less wear resistant or tougher carbide grade or spherical buttons

Bit regrind intervals, bit service life and over-drilling



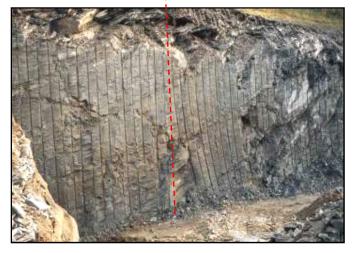
Example of drill steel followup for MF-T51


Bit service life (dr-ft)

Accurate drilling gives effective blasting

Sources of drilling error

- 1. Marking and collaring errors
- 2. Inclination and directional errors
- 3. Deflection errors
- 4. Hole depth errors
- 5. Undergauge, omitted or lost holes


Examples of drill-hole deviation

Deflection with and without pilot tube for Ø3½" DC retrac bit / T51 in micaschist

Directional error Ø3½" retrac bit / T45 in granite

Deflection caused by gravitational sagging of drill steel in inclined holes in syenite

I-26 Mars Hill Highway Project, North Carolina

D & B excavation volume Contractor for presplitting Equipment for presplitting Bench height Drill steel Target accuracy at hole bottom Rock type 13.7 mill. m³
Gilbert Southern Corp.
3 x Ranger 700 with PS feeds
7.6 m with 40° inclined walls
Ø3" retrac / T45
152 mm at 10.0 m or 15.2 mm/m
biotite-granite gneiss

Lafarge Bath Operations, Ontario

Annual production 1.6 mill. tonnes

Rock type limestone

Current program - Pantera 1500

Bench height 32 m

Bit Ø115 mm guide XDC
Drill steel Sandvik 60 + pilot tube

Hole-bottom deflection < 1.5 %
Gross drilling capacity 67 drm/h

Drill pattern 4.5 x 4.8 m² (staggered)
Sub-drill 0 m (blast to fault line)

Stemming 2.8 m

No. of decks

Stem between decks 1.8 m

Deck delays 25 milliseconds

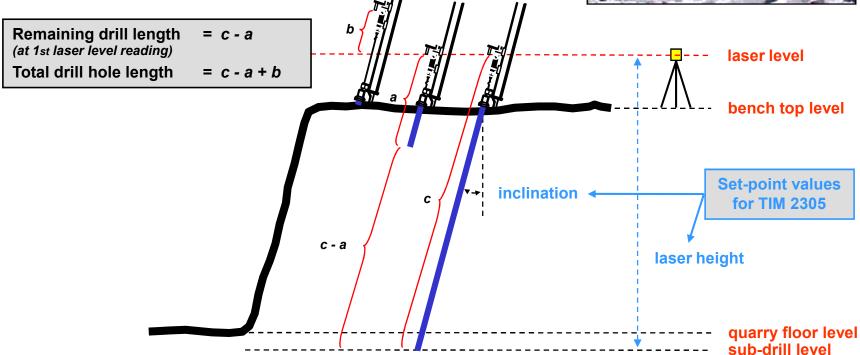
Charge per shothole 236 kg

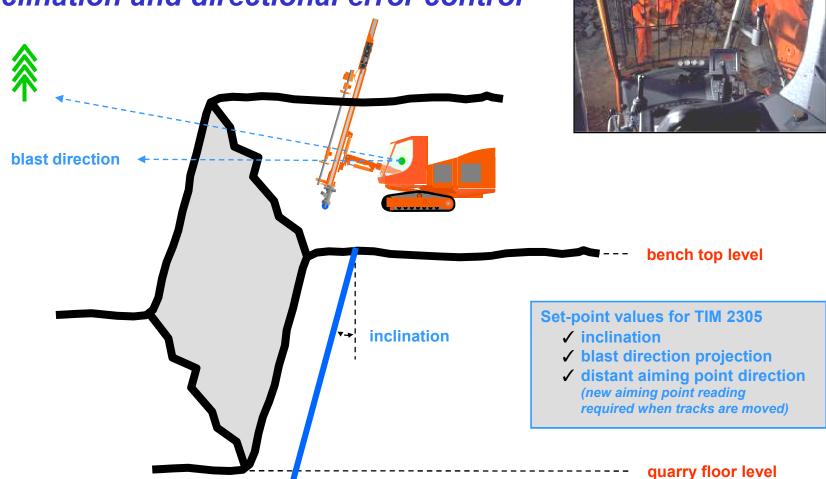
Explosives ANFO (0.95 & 0.85 g/cm³)

Powder factor 0.34 kg/bm³

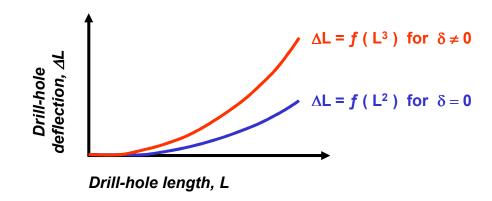
Marking and collaring position error control

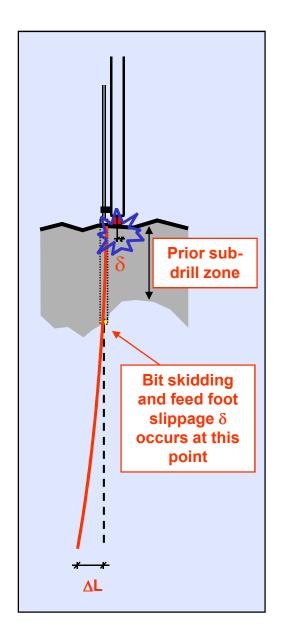
Marking collaring positions


- 1a. Use tape, optical squares or alignment lasers for measuring out drill-hole collaring positions.
- 1b. Use GPS or theodolites to determine collaring positions an advantage when drilling from undulating terrain.
- 2. Collaring positions should be marked using painted lines not movable objects such as rocks, shothole plugs, etc.
- 3. Use GPS guided feed collar positioning device.


Hole depth error control

Inclination and directional error control



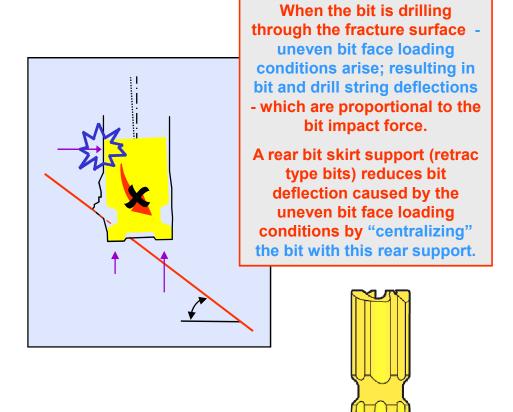

sub-drill level

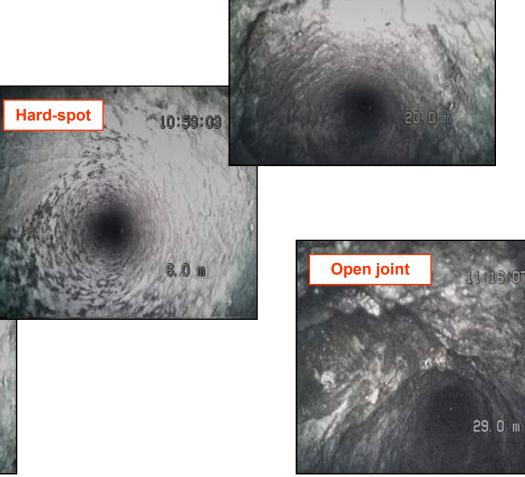
Drill-hole deflection error control

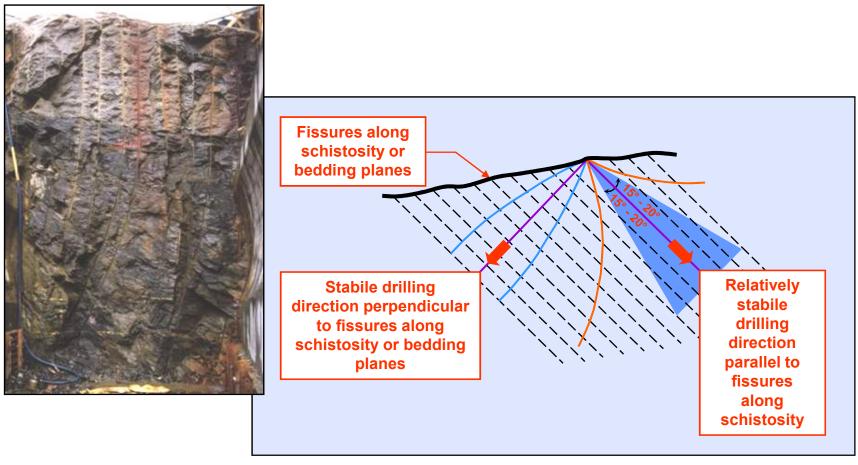
- select bits less influenced by rock mass discontinuities
- reduce drill string deflection by using guide tubes, etc.
- reduce drill string bending by using less feed force
- reduce feed foot slippage while drilling since this will cause a misalignment of the feed and lead to excessive drill string bending (occurs typically when drilling through sub-drill zones from prior bench levels)
- avoid gravitational effects which lead to drill string sagging when drilling inclined shot-holes (> 15°)
- avoid inpit operations with excessive bench heights

How bit face designs enhance drill-hole straightness

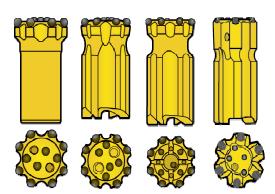
When the bit starts to drill through the fracture surface on the hole bottom - the gauge buttons tend to skid off this surface and thus deflect the bit.


More aggressively shaped gauge inserts (ballistic / chisel inserts) and bit face profiles (drop center) reduce this skidding by allowing the gauge buttons to "cut" through the fracture surface - thus resulting in less overall bit and drill string deflection.


How bit skirt designs enhance drill-hole straightness

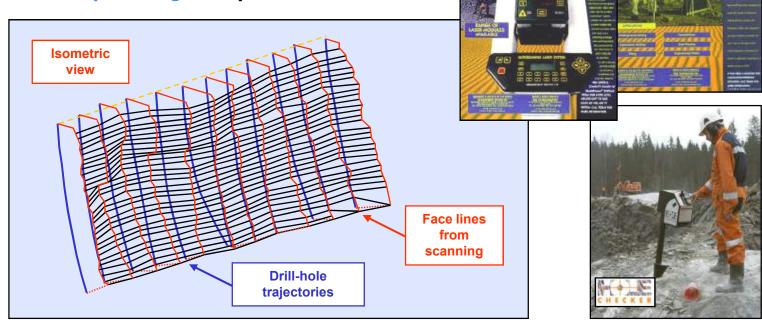

Inhole video of a Ø64mm hole

Joint


Drill-hole deflection trendlines in schistose rock

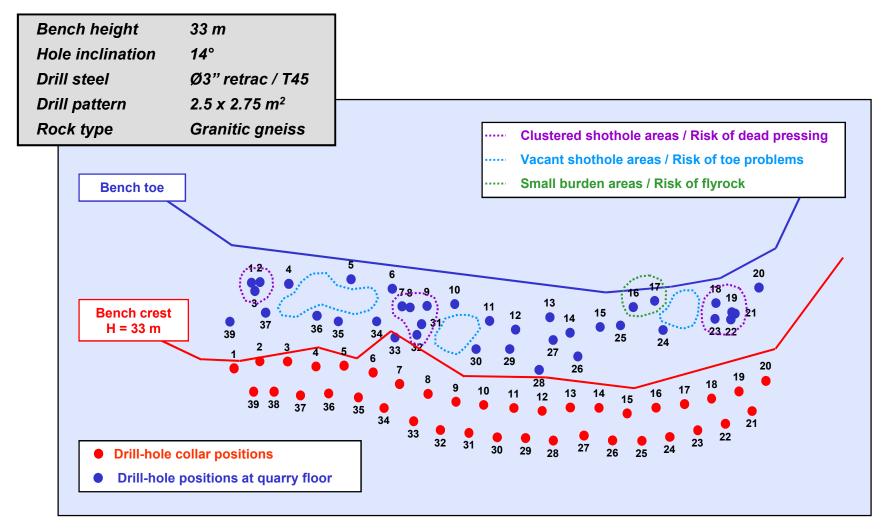
Selecting straight-hole drilling tools - TH

- optimum bit / rod diameter relationship
- insert types / bit face and skirt
 - ✓ spherical / ballistic / chisel inserts
 - ✓ normal bits
 - ✓ retrac bits
 - √ drop center bits
 - ✓ guide bits
- additional drill string components
 - ✓ guide tubes / pilot (lead) tubes

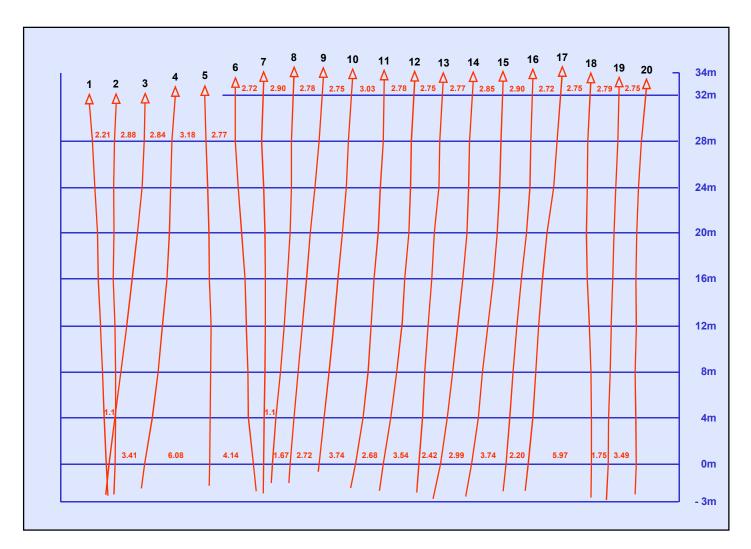

Documention of drilling and charging prior to blasting

actual distribution of explosives in the rock mass indicating local variations of powder factor

■ risk of flyrock from bench face and top


■ risk of flashover initiation between shotholes

■ risk of dead pressing of explosives



Drilling Management Drill pattern at quarry floor

Drilling Management Vertical projection of Row 1

Summary of H = 33m bench drill-hole deviation errors

Target inclination	14.0°		
Average inclination	14.4°		
Standard deviation	1.4°		
Target azimuth	0.0°		
Average azimuth	-7.6°		
Standard deviation	7.7°		

Bench	Drill-hole	Inclin. and directional	Deflection	Total deviation	Deviation
height, H	length, L	errors, ΔL_{I+D}	errors, ∆ L _{def}	errors, ∆ L _{total}	$\Delta L_{total} / L$
(m)	(m)	(mm)	(mm)	(mm)	(%)
9	9.3	440 (<mark>140</mark>)	120	420	4.5
13	13.4	640 (<mark>210</mark>)	240	650	4.9
17	17.6	840 (<mark>275</mark>)	400	900	5.1
21	21.7	1040 (<mark>340</mark>)	610	1190	5.5
33	34.1	1630 (<mark>530</mark>)	1470	2270	6.7
	()	values where the systematic azin	nuth error has been e	xcluded	

Summary of drill-hole deviation prediction

Prediction of overall drill-hole deviation magnitude

■ collaring errors ΔL_c ~ d

■ inclination + direction errors $\Delta L_{I+D} = k_{I+D} \cdot L$

 k_{I+D} = 20 - 60 (mm/m) or 1.1° - 3.5°

■ deflection errors $\Delta L_{def} = k_{def} \cdot L^2$

■ total errors $\Delta L_{total} = (\Delta L_{l+D}^2 + \Delta L_{def}^2)^{1/2}$

Straight-hole drilling components

 driller - marking, collaring position and feed foot slippage adjustment and feed control

 drill rig - inclination and directional control, hole depth, drilling control systems, collaring procedures

drill steel - bit skidding while collaring, sagging and deflection control

management - quality and cost of shotrock production, blasting safety and documentation

Prediction of deviation errors

- direction of deviation can not be "predicted"
- magnitude of deviation can be predicted

Rock mass factor, k _{rock}	
■ massive rock mass	0.33
■ moderately fractured	1.0
■ fractured	2.0
■ mixed strata conditions	3.0
Bit design and button factor, k _{bit}	t
■ normal bits & sph. buttons	1.0
■ normal bits & ball. buttons	0.70
■ normal X-bits	0.70
■ retrac bits & sph. buttons	0.88
■ retrac bits & ball. buttons	0.62
■ retrac X-bits	0.62
guide bits	0.38

Drill-hole Deviation Prediction predH=33.xls/A. Lislerud					
				D 111 0	
Location				Bench H = 3	
Rock type Bit type				Granitic gneis	SS
ы туре				Reliac bit	
Bit diamet	er (mm)			dbit	76
Rod diame	` ′			dstring	45
	e diameter (mm)		dguide / No	No
Suide tube	Julainietel (11111)		aguide / INO	140
Total det	flection fa	ctor		K def	1,34
rotar acr	rock mass			Krock	1,30
	drill-string			Kstiffness	0,138
	bit wobblin			Kw obbling	0,592
	-		Kguide	1,000	
guide tubes for rods		Kbit	0,88		
	bit design and button factor		iactoi	Krod	0,096
	constant			Kroa	0,096
la alimatic	n and die	4:	ror factor	ku. p	47.8
inciinatio	on and dir	ection eri	or ractor	K I + D	47,0
Drill-hole	e deviatio	n predicti	on		
Dim non		Drill-hole		Drill-hole	Drill-hole
	Length	Inc + Dir	Deflection	Deviation	Deviation
	L	∆LI+D	∆Ldef	∆Ltotal	∆Ltotal / L
	(m)	(mm)	(mm)	(mm)	(%)
	9,3	444	116	459	4,9
	13,4	640	241	684	5,1
	17,6	840	415	937	5,3
	21,7	1036	631	1213	5,6
	34,1	1628	1559	2254	6,6

How drilling errors affect down-stream operations

Drilling	■ reduced drill steel life
Blasting	 danger of poor explosives performance in neighbouring shotholes due to deflagration or deadpressing
	danger of flyrock due to poor control of front row burden
Load and Haul	poor loading conditions on "new floors" with reduced loading capacities due to toes and quarry floor humps and locally choked (tight) blasts
Good practice	■ max. drill-hole deviation up to 2-3 %

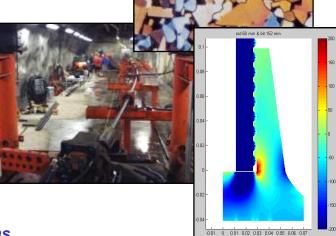
Summary of some topics in percussive drilling

Drill bits

- ✓ induce rock chipping
- ✓ sets conditions for impact energy transfer efficiency in TH drilling
- ✓ clean hole bottoms flushing
- ✓ self stabilising bit bodies enhance straight hole drilling

Bit regrinding - extended bit life

- ✓ remove snakeskin avoid premature button breakage
- ✓ reshape topworn buttons reduce bit forces and button breakage
- ✓ avoid flat buttons, low protrusion and bit bottoming


Drill steel

- ✓ impact energy transfer efficiency in TH drilling
- ✓ flushing return air velocity
- ✓ tubes or pilot tube/rods straight hole drilling

Drilling control systems

- ✓ bit feed speed control
- ✓ flushing flow control
- ✓ drill string anti-jamming
- ✓ feed force and impact power control
- ✓ feed alignment, hole length and rig positioning systems
- ✓ input source for condition monitoring and MWD

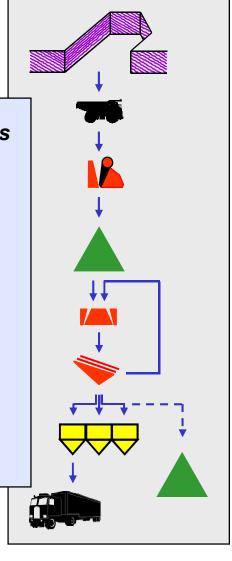
How drilling and blasting affect down-stream operations

Blasting

Loading

Crushing

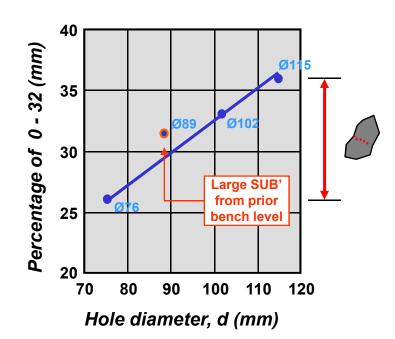
- sizing drill patterns
- drilling accuracy
- field performance of explosives
- shotrock fragmentation selectivity in
 - ✓ boulders
 - **✓** floor humps
 - ✓ fines and fragment microcracks
- muckpile profiles & swell

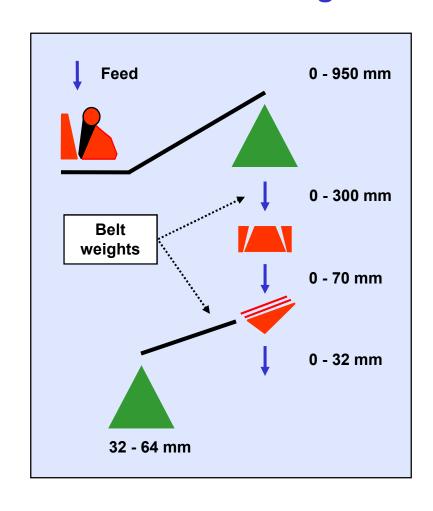

- loadability and loading capacities
- selectivity in mining & industrial mineral operations
- **■** boulder downtime
- **■** crushing capacities
- **■** power consumption
- production of fines and waste

Quarry Process Mapping

- create a baseline for existing quarrying operations and sales
- determine end-product fraction quantities as to market oppurtunities and fraction profitability
- review alternative quarry layouts especially hauling
- adjust drill, charge and firing patterns for shotrock that:
 - ✓ enables production of desired end-product fraction quality and quantities from crushing plant
 - ✓ reduces equipment downtime
 - ✓ minimises waste
- systems in place for tracking consumables, machine hours, work-hours and production for costing and KPI input

Fines Management

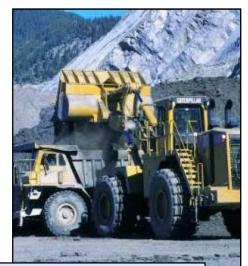

Nodest Vei A/S, Norway - shotrock micro-fracturing


Rock type Anorthosite

Explosive Slurrit 50-10

Test blasts 4 x 50 000 tonnes

Bench height 11 m


Lafarge Exshaw Cement Quarry

Annual production 1.6 mill. tonnes

Rock types limestone / dolomite

Density 2.6 g/cm³

Primary gyratory crusher 54" / 1370 mm - opening 150 mm

Base Line

Bench height 11 m

Drill-hole diameter Ø200 mm

Drill pattern 6 x 7 m² (rectangular)

Sub-drill 1.5 m

Stemming 6.0 m (0 - 19 mm matr.)

Burden delay 25 ms/m Spacing delay 6.0 ms/m

Explosive ANFO (1.05 g/cm³)

Charge per shothole215 kgPowder factor 0.47 kg/bm^3 Back-breakup to 11 mShotrock fragmentation $d_{90} = 630 \text{ mm}$

Secondary crusher 995 tph

Finer Fragmentation

Bench height 11 m

Drill-hole diameter Ø102 mm

Drill pattern 3 x 3.5 m² (staggered)

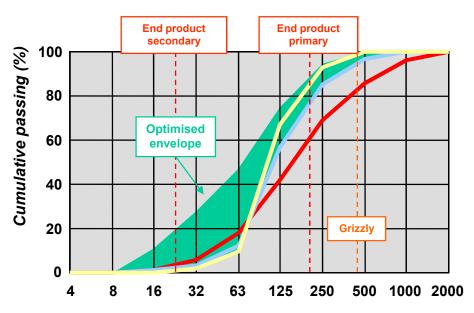
Sub-drill 1.0 m

Stemming 2.0 m (with stem plugs)

Burden delay 31 ms/m Spacing delay 7.1 ms/m

Explosive ANFO (0.95 g/cm³)

Charge per shothole 78 kg


Powder factor 0.67 kg/bm^3 Back-break avg. 2.9 m Shotrock fragmentation $d_{90} = 300 \text{ mm}$

Secondary crusher 1150 tph

Crushing plant 30% power reduction

Lafarge Exshaw Cont.

| Fragment dimension H (mm)

		Base Line	Finer Frag.	Nonel	Electronic
Drill & Blast	Shothole diameter, mm	200	102	102	102
	Drill pattern, m2	6 x 7	3 x 3,5	3,5 x 3,5	3,5 x 3,5
	ANFO density, g/cm3	1,05	0,95	1,05	1,05
	Powder factor, kg/bm3	0,47	0,67	0,63	0,63
Firing	Initiation system	NONEL	NONEL	NONEL	Daveytronic
	Downhole delay, ms		500	500	None
	Inter-hole delay, ms	42	25	17	17
	Inter-row delay, ms	150	92	92	92
Shotrock Fragmentation	90% passing - d90, mm	630	300	351	220
	Grizzly retain (> 480 mm), %	18	5	5	0
Ground Vibrations	Distance, m	375	375	280	270
	Peak particle velocity, mm/s	> 8	4,75	6,97	4,51
	Main frequencies, Hz	9 - 21	14 - 21	10 - 21	11 - 39
Plant Production	Peak - 1 hour average, tph	834	980	980	1050
	Power consumption, kW	2259	1808	1979	1858
	Specific energy, kWh/t	2,71	1,84	2,02	1,77
	3 day average, tph	625	725	676	722
	Power consumption, kW	1645	1342	1370	1283
	Specific energy, kWh/t	2,63	1,85	2,03	1,78

www.quarryacademy.com

Improving Processes. Instilling Expertise.