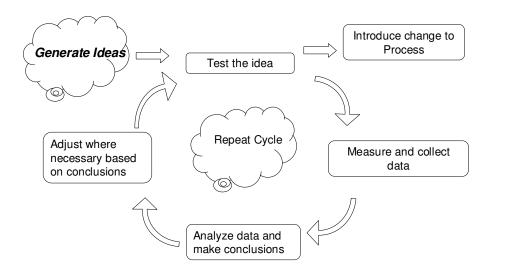
2005 National Quarry Academy


Golden, Colorado October 31 to November 3, 2005

Blast Management

L. Mirabelli Senior Technical Consultant DynoConsult A Service Division of Dyno Nobel Inc.

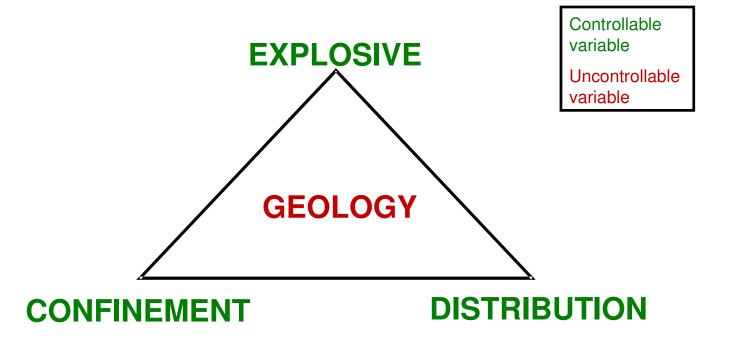
Continuous Improvement makes successful change!

- Attitude
 - Proactive
 - "Do it right today."
 - "Do it better tomorrow." and
 - "Whatever you do. Track metrics and pay attention to details."

Details of Blast Design

- Geology
- Explosive
- Hole diameter
- Burden
- Spacing
- Bench height
- Hole depth & inclination
- Subdrill

- Drill pattern
- Stemming & Inert decking
- Powder Factor
- Energy Factor
- Initiation sequencing
- Hole timing
- Environmental effects
 - Vibration and Air Overpressure
 - Fumes & Dust



Blast Design Variables

Blast Design Variables

Explosive – A controllable variable in blast design

What explosive is chosen to be used.

Density

- Velocity of Detonation
- Energy
- Water Resistance
- ✓ Form
 - Package
 - Bulk
 - Dry Blend/Free Flowing
 - Wet Blend/Augerable
 - Pumpable Blend

Confinement – A controllable variable in blast design

- How the explosive energy is confined so that it can do work.
 - Amount of material surrounding the explosive in the drill hole
 - Material between the drill hole and any dynamic or static free space.
 - Distance of the drill hole from an open face.
 - Burden
 - ✓ Distance of drill holes relative to one another.
 - Burden
 - Spacing
 - ✓ Type and amount of stemming

Distribution – A controllable variable in blast design

- How the explosive energy is distributed throughout the rock mass – vertically and horizontally.
 - Diameter of the drill hole.
 - Limiting the diameter of explosive.
 - Diameter of the explosive.
 - In the case of package explosives.
 - ✓ Depth of the drill hole and the amount loaded.
 - Spacing of the drill holes

Geology - uncontrollable variable in blast design

- Properties of blasted rock mass can change: between pits; within a pit; between bench levels; even within a bench.
 - Density
 - Hardness
 - Jointing
 - Bedding
 - ✓ Mean Block Size
 - ✓ Voids & Caves

The Explosive Energy Balance

- In blasting work explosives are detonated releasing their chemical energy. Energy must go somewhere.
 - Energy Fragmentation
 - Energy Moving and Heaving the rock
 - Energy Ground Vibration
 - Energy Air Overpressure

Best Practice starting points for basic Blast Design

Quarrying	Units	Rules of Thumb	Best practices
Burden (B)	ft	(range 25 to 35) x D _e /12	$([P_e \times 2 / P_r] + 1.8) \times D_e$
Spacing (S)	ft	(range 1 to 1.8) x B	1.15 x B
Bench Height (H)	ft	10 x D _e	3 x B (or greater)
Minimum Bench Height (H _m)	ft	2 x B	2 x B
Subdrill (J)	ft	(range 0.2 to 0.5) x B	0.2 x B
Stemming (T)	ft	(range 0.7 to 1.3) x B	24 x D _e / 12
Inert Decking (T _{dd})	ft	6 x D _e / 12 (dry hole)	8 x D _e / 12
Inert Decking (T _{dw})	ft	$12 \text{ x } D_e / 12 \text{ (wet hole)}$	16 x D _e / 12
Bottom Charge (E _b)	ft	[(range 0.3 to 0.5) x B] + J	
Charge Length (C _l)	ft	H + J - T	$[(\mathbf{H} + \mathbf{J}) / \operatorname{cosine} \mathbf{A}_{\mathbf{b}}] - [\mathbf{J} + \mathbf{T}]$
Powder Factor (PF)	tons / lb.	2.5 to 1.25	2.2
Where:			
Diameter of charge (D _e)	in		
Density of rock (P _r)	g/cc		
Density of explosive (P _e)	g/cc		
Borehole Angle (A _b)	° off		
	vertical		

Keys to Optimizing Explosive Performance

- Choose Optimum Explosive Type.
- Optimize the distribution of the explosive's energy.
- Optimize confinement of the explosive's energy.

Keys to Optimizing Explosive Performance

- Choose Optimum Explosive Type
 - For Primer make-up and/or Main Explosive Charge
 - Critical diameter
 - Density
 - Sensitivity
 - Sensitiveness
 - Water resistance
 - Detonation velocity
 - Detonation pressure
 - Energy
 - Storage, Transportation and Loading/Handling.

- Initiation System
 - Type signal
 - Timing options
 - Fixed
 - Number of delay periods
 - Programmability
 - Accuracy/Precision
 - Storage, Transportation and Loading/Handling

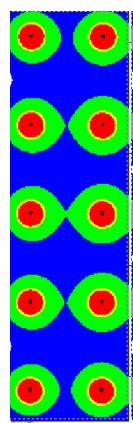
Keys to Optimizing Explosive Performance

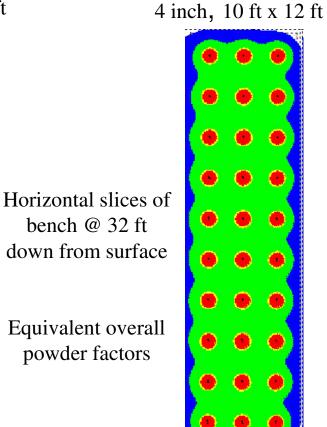
- Explosive Energy Distribution Optimization
 - Increased distribution reduces overall rock fragment size.
 - Decreased distribution increases overall rock fragment size.
 - Even distribution achieves uniform fragmentation.
 - Important to maintain even distribution from top to bottom of bench.
 - Widely spaced jointed rock mass requires reduced patterns

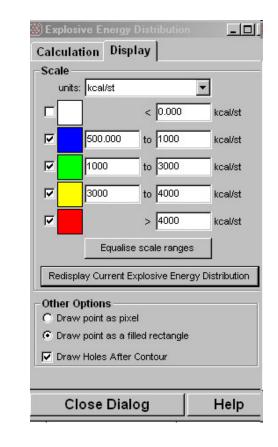
Keys to Optimizing Explosive Performance

Explosive Distribution

Hole Diameter (in)	4	6	7	9	
Bench height (ft) [H]	40	40	40	40	
Burden (ft) [B]	10	15	17	21	
Spacing (ft)	12	17	20	26	
Stemming (ft) [T]	7	10.5	12	15	
Subdrill (ft)	3	4.5	5	6.5	
Explosive	ANFO	ANFO	ANFO	ANFO	
Powder Factor (tons/lb.)	2.02	2.02	2.03	2.07	
Bench Stiffness (H/B)	4	2.7	2.4	1.9	
Explosive Distribution (1-T/H)x100	83%	74%	70%	63%	
Energy Factor (kcal/ton)	200	200 199		195	
Fragmentation F80*	25 inch	29 inch	29.5 inch	31 inch	


Equivalent Powder Factor or Energy Factors 🗲 Equivalent Explosive Distribution




^{*}more dramatic change in uniformity.

Energy Distribution Comparison – Planar

9 inch, 21ft x 26 ft

Keys to Optimizing Explosive Performance

- Explosive Energy Confinement Optimization
 - Explosive Energy must be confined long enough after detonation to establish fractures and displace rock.
 - Design timing to provide adequate relief without loss of confinement.

Control paths of least resistance for explosive energy

- load according to geology and face conditions
- use adequate and proper stemming materials
- Accurately layout and drill the blast pattern

Remember:

- over confinement = excessive vibration
- under confinement = excessive air blast

Explosive Types – Main Explosive Charge

- Bulk Explosive
 - Blasting Agent, 1.5 D (not detonator sensitive)
 - ANFO
 - Heavy ANFO Blend
 - Water gel
 - Emulsion
 - Repumpable ANFO Blend
 - Water gel
 - Emulsion (available with field density adjustment)
 - Repumpable
 - Water gel
 - Emulsion (available with field density adjustment and/or homogenization)

Explosive Types – Main Explosive Charge

- Package Explosive
 - Explosive, 1.1 D (detonator sensitive)
 - Dynamite
 - Emulsion
 - Blasting Agent, 1.5 D (not detonator sensitive)
 - ANFO, ANFO WR
 - Water gel
 - Emulsion

Explosive Types – For use in primer make-up

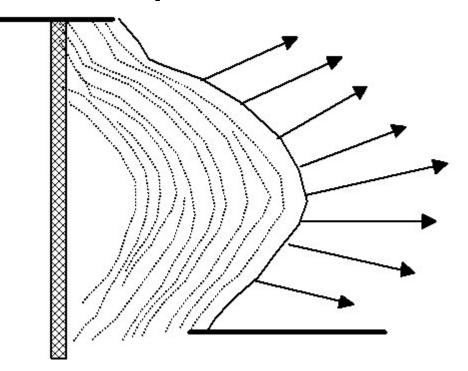
- Package Explosive
 - Explosive, 1.1 D (detonator sensitive)
 - Dynamite
 - Emulsion
 - Cast Boosters

Explosive Types – Initiation System

- Electric
 - Copper leg wires
 - Millisecond delay period detonators
 - Blasting Equipment
 - Standard Capacitor Discharge Blasting Machine
 - Sequential Capacitor Discharge Blasting Machine

Nonelectric

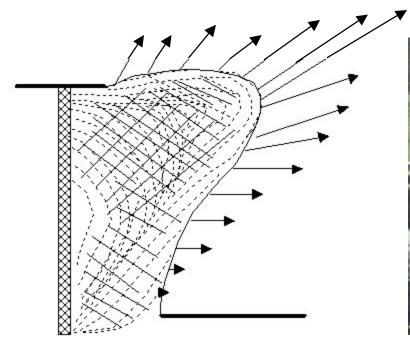
- NONEL
 - Shock tube lead
 - Millisecond delay period detonators surface and in-hole
- Miniaturized Detonating Cord/Nonel
 - Low core load detonating cord
 - Millisecond delay period detonators surface and in-hole

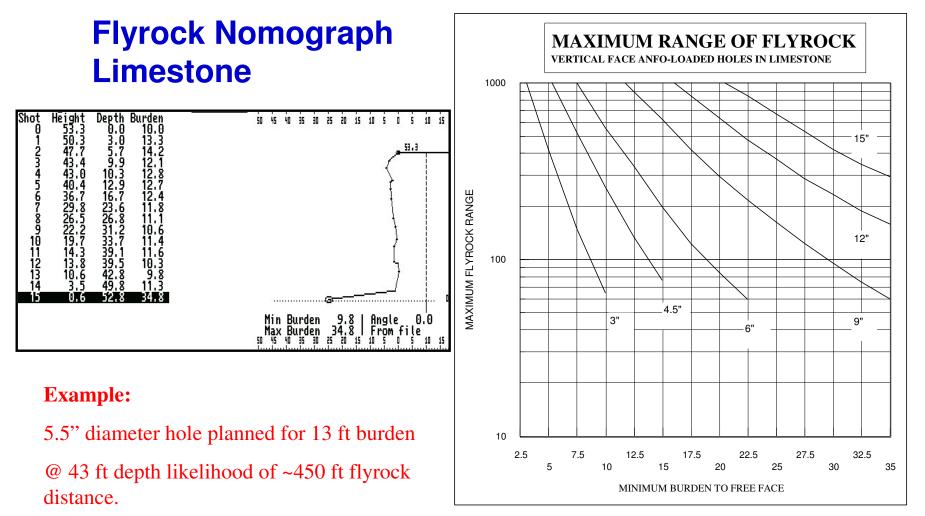

Explosive Types – Initiation System (continued)

- Electronic
 - Copper leg wires
 - Field programmable precision delay detonators
 - Nonexplosive accessories
 - Wire, connectors, controllers etc
 - Computer testing, programming and blasting equipment.
- Nonelectric Electronic
 - Shock tube lead
 - Factory programmed precision delay detonators
 - In-hole
 - Surface Delay

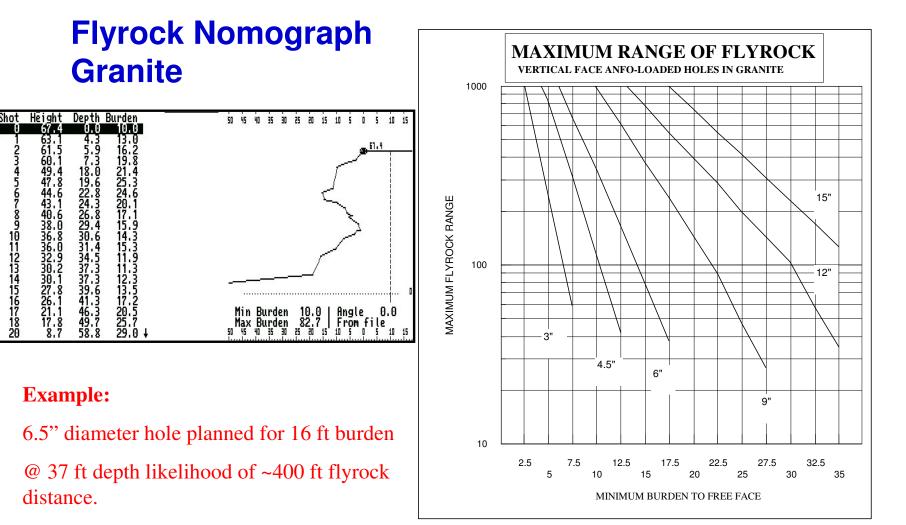
Optimizing Explosive Energy Confinement

Adequate Confinement Proper Face Movement




Optimizing Explosive Energy Confinement

Inadequate Confinement Improper Face Movement



Stemming

Inert material loaded on top of an explosives column in a blasthole. Stemming provides for explosives energy confinement and best blasting results.

For stemming use angular stone with mean size 12.5 % of diameter of the drill hole.

- 70% of the Burden
 - When using the same delay for the top and bottom primer in a hole or when initiating from the top of the column
- 50% of the Burden
 - When using a later delay in the top of the column.

Stemming

The amount of broken material in the bench top needs to be accounted for to maintain confinement and control flyrock

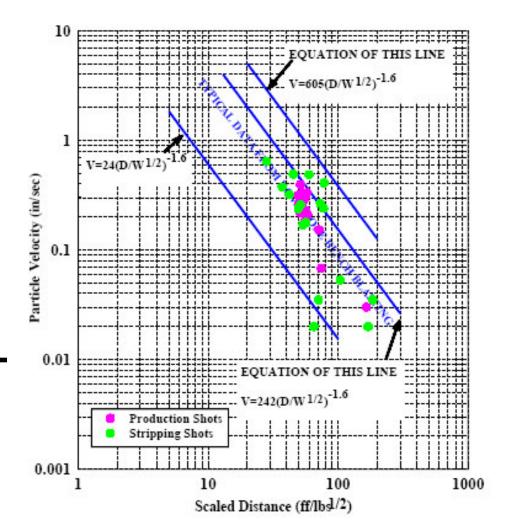
		STEMMING CONVERSION CHART											
		NORMAL STEMMING HEIGHF 4 5 6 7 8 9 10 11 12 13 14 15											
	1	5	6	7	8	9	10	11	12	13	14	15	16
	2	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5	16.5
>	3	6	7	8	9	10	11	12	13	14	15	16	17
AN	4	7	8	9	10	11	12	13	14	15	16	17	18
– – – – – – – – – – – – – – – – – – –	5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5	16.5	17.5	18.5
	6	8	9	10	11	12	13	14	15	16	17	18	19
Ŭ, Î	7	9	10	11	12	13	14	15	16	17	18	19	20
OOSE, OR	8	9.5	10.5	11.5	12.5	13.5	14.5	15.5	16.5	17.5	18.5	19.5	20.5
BROKEN, LO ISOLIDATED	9	10	11	12	13	14	15	16	17	18	19	20	21
z,F	10	11	12	13	14	15	16	17	18	19	20	21	22
ЧЧ	11	11.5	12.5	13.5	14.5	15.5	16.5	17.5	18.5	19.5	20.5	21.5	22.5
õ Ľ	12	12	13	14	15	16	17	18	19	20	21	22	23
E E E	13	13	14	15	16	17	18	19	20	21	22	23	24
ш Ц	14	13.5	14.5	15.5	16.5	17.5	18.5	19.5	20.5	21.5	22.5	23.5	24.5
TH OF	15	14	15	16	17	18	19	20	21	22	23	24	25
		15	16	17	18	19	20	21	22	23	24	25	26
DE	17	15.5	16.5	17.5	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5
	18	16	17	18	19	20	21	22	23	24	25	26	27
	19	17	18	19	20	21	22	23	24	25	26	27	28
	20	17.5	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5	28.5
		NOTE: STEM HEIGHTS FOR END HOLES SHOULD BE INCREASED TO 100% OF THE BURDEN.											

Blast Vibration and Overpressure Control

- Monitor, Monitor, Monitor...Analyze, Analyze, Analyze
- Develop & maintain site constants for use in estimating blast vibration.
- In vibration sensitive areas limit pounds per delay
 - Reduce borehole size
 - Use multiple explosive decks in blast holes. (adjust pattern)
 - Limit number of rows.
- Use quality stemming material, proper amounts and stemming plugs to control overpressure.
- Avoid blasting in overcast, during temperature inversion or other weather conditions that can increase overpressure.

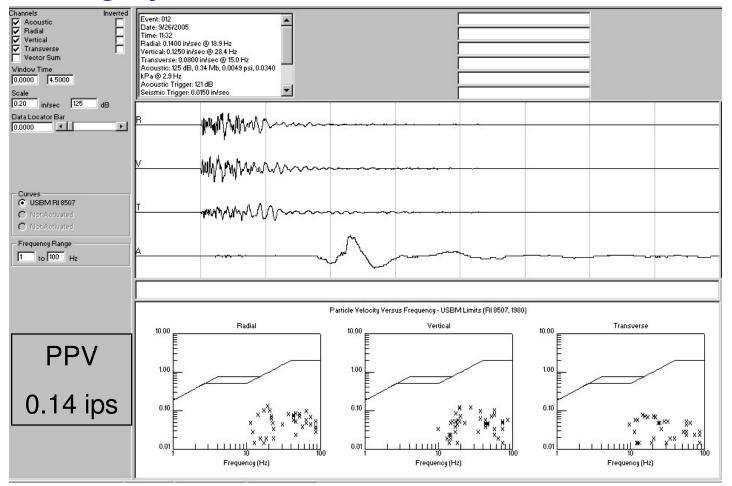
Blast Vibration and Overpressure Control

- Limit total blast duration to less than 750ms.
- Map resultant vibrations in areas around perimeter of property to identify anomalies.
- Use wave superposition models to develop and evaluate alternative blast initiation sequences that will shift wave frequencies and limit Peak Particle Velocity (PPV)
 - Consider electronic detonators to apply non conventional blast design delays.

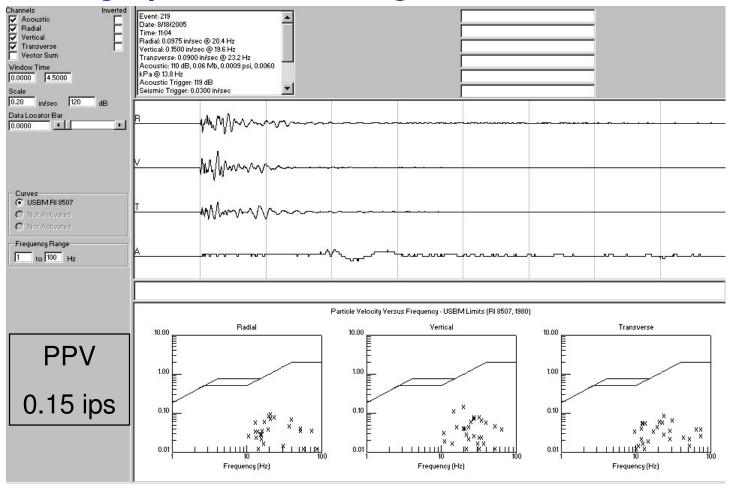

Blast Vibration

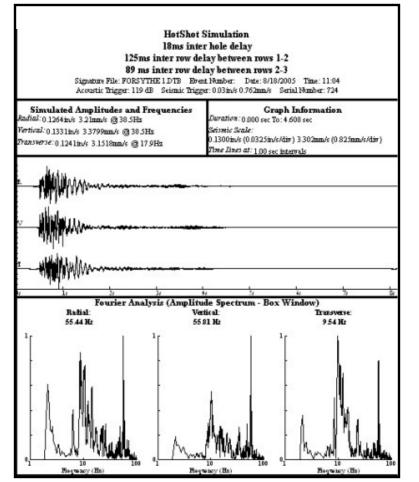
Oriard's equations for estimating ground vibrations (PPV) from typical blasting operations using square root scale distance.

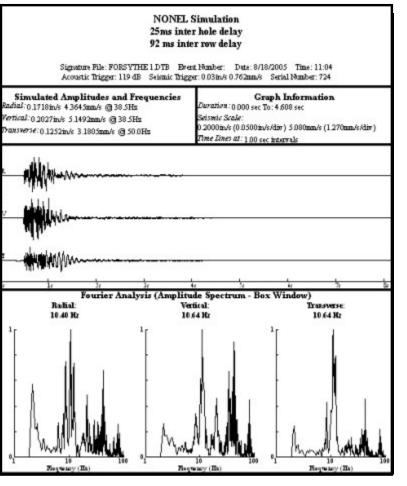
Scale Distance:


Distance in feet to seismograph

Pounds of explosive per 8 ms delay increment.


Seismograph Record – Production Blast




Seismograph Record – Single Blasthole

SANDVIK

Synthesized Seismograph Records – Model Outputs

