

Geometallurgy – what, why and how?

Pertti Lamberg

Professor in Geometallurgy

8th Fennoscandian Exploration and Mining – FEM 2011 1-3 November 2011, Levi, Finland

Pentti Sotka 1950-2011

Traditional approach

Technical risks in mining operation

Resource Estimate Risk

Grade and tonnage risk

Mining Risk

Risk of wrong mining method

Technological Risk

Risk of wrong technology

Geotechnical Risk

• Ground failure risk

Geometallurgical Risk

Metallurgical variation risk

Glacken 2011; Resource estimation and evaluation in the New Millenium, FEM2011

Problems in traditional approach

- Ore reserve model does not carry information on spatial variation on metallurgical parameters
- Ore boundaries are based on (variation of) grade only

Incomplete resource utilisation
 Unoptimised production
 Poor risk management
 Scenarios studies are difficult to CCC to the rehology in Scandinavia

Examples

- Projected metallurgical figures (grade and recovery) are based on few samples
- Testing with high-grade samples only
- Presence of clay minerals in heap leaching operation

Geometallurgy

Geometallurgy combines geological and metallurgical information to create spatially-based predictive <u>model</u> for mineral processing plants.

Expected benefits from geometallurgical consideration

- Better utilisation of the resource
- Better metallurgical performance
- Better changes for new technological solutions
- Better changes in plant optimisation
- Better possibilities for economical optimisation of the full operation
- Lowering risks in the operation

Geometallurgical program

 \mathbf{L}

Bulled & McInnes (2005), David (2007) & Dobby et al. (2004)

Selecting samples for metallurgical testing – Covering the grade range

Williams & Richardson 2004

Number of samples required

Table 7 Possible number of tests needed in a geometallurgical mapping program

	Type of test		Number
	Assays		10,000++
Geo-	Mineralogy		1000+
	Grinding		100-300
nical	Metallurgical	Tests	100-300
samples	(e.g. flotation, bottl	e rolls)	

Metallurgical	Minipilot test	5-20
samples	Pilot test	2

Williams & Richardson 2004

Laboratory bench scale testing

- Require big sample sizes (1-50 kg)
- Tedious
 - Some samples / day
- Examples
 - Bond Work Index test
 - Batch flotation test

The northernmost Uni Worl

Model between ore properties and metallurgical parameters

Geometallurgical domains

Domains defined by homogeneity in terms of

- Geology
- Geochemistry
- Mineralogy
- Texture
- Processing technique
- Grinding and metallurgical domains maybe different since they have different drivers.
 - This is the platform from which all subsequent stages are derived.

be

Hallewell 2009

Geometallurgical domains

The northernmost University of Technology in Scandinavia World-class research and education

Whittaker 2009

Populating block model

Hallewell 2009

Geometallurgical block model (SGS)

Separate grinding and flotation models and simulations

A novel approach to the geometallurgical modelling of the Collahuasi grinding circuit

O.M. Alruiz^a, S. Morrell^b, C.J. Suazo^{a,*}, A. Naranjo^a

^aCompañia Minera Doña Inés de Collahuasi SCM, Av. Andrés Bello 2687, Santiago, Chile ^bSMCC Pty Ltd., 26 Mermaid Place, Sinnamon Park, Queensland 4073, Australia

Geometallurgical modelling of the Collahuasi flotation circuit

C.J. Suazo^{a,*}, W. Kracht^b, O.M. Alruiz^a

^a Compañía Minera Doña Inés de Collahuasi, Chile
^b Mining Engineering Department, Universidad de Chile, Chile

- 3000 m drill cores for six combined samples
 - JK Drop weight tests
 - Bond work index tests
 - 10 flotation tests for each to derive flotation parameters

Model for throughput

Suazo et al. 2010

Copper recovery model (Collahuasi)

Challenges

- How to get the geological model to discuss with the metallurgical model?
- How to reach required reliability without increasing the costs (drastically)?

- Number of samples tested

Geometallurgical tests

- Short-cut methods which measure metallurgical properties of rocks
 - With smaller samples than metallurgical tests
 - Easier and faster than metallurgical tests

Comminution

Point-load testingRBT Lite

Concentration

- Flotation
 - JK Mineral Separability Index ("Coctail Shaker test"; Bradshaw 2010)
- Magnetic separation
 - Davis tube (Niiranen 2011)
- Gravity separation
 - Super pan

How to link geology and metallurgy?

Table 3 Linkage between geological and metallurgical factors.

Geological/mineralogical	Area of Linkage	Metallurgical unit
Factor		Operation
Primary rock types and	Hardness	Grinding
distribution		
Ore assemblage and ore	Solubility, presence of talc,	Grinding, flotation,
formation processes	hardness	leachability,
Alteration		Grinding, S/L separation
 Down temperature 	Clays, hardness	
(hypogene)		
• Weathering (supergene)	Solubility	Leachbility, purification
Faulting	Clays, oxidation	S/L separation, flotation
Metamorphism	Clays, presence of talc,	Grinding, S/L separation,
	hardness	flotation

Williams & Richardson 2004

Requirements for geological model

- Mineral grades
- Mineral textures
- (Rock hardness)

Mineral grades - quantification

- SEM Image analysis (MLA, QEMSCAN, ..)
- XRD
- Hyperspectral techniques (HyLogging, SisuRock)
- Element to mineral conversion

Continous XRF analysis

Box picture:

Box Logging:

A P A

L 2752- 1-1.

Viitanen 2009

(Mine On-Line Services)

Hide

2.70

Element to mineral conversion - Malmberget

(Cecilia Lund & Pertti Lamberg)

Chemical assays (12):

Fe, P, SiO2, CaO, MgO, Al2O3, MnO, TiO2, V2O5, K2O, Na2O, S, (Satmagan) Conversion to minerals (10):

Magnetite, ilmenite, apatite, albite, actinolite, diopside, biotite, orthoclase, quartz, pyrite, (hematite)

Block model

Mineral textures in geological model

Descriptive information

 Difficult to include in the block model (non-additive)

Texture to particles: Optical image analysis

•Breakage of the rock and particles is neither random nor fully preferential (along grain boundaries)

LULEÀ UNIVERSITY OF TECHNOLOGY Scanning drill cores

Opitcal / LIBS = Laser Induced Breakdown Spectroscopy

Rock hardness

- Does mineralogy and texture describe it adequately?
- Measurements while drilling (MWD)

Process model

- Based on:
 - Minerals
 - Particles
- Similar particles behave in the process in a similar way
- Properties which define the particle behaviour:
 - Size
 - Composition
 - Density
 - Shape

Particle-based geometallurgical block model

Become global?

Resource

- •Block ID
- Location
- •Elemental grades
- •Chemical composition of minerals
- •Mineral grades
- •Bulk SG
- •Mineral textures
- •Hardness

<u>Metallurgy</u>

Property based parameters
Breakage model
Comminution = size distribution

•Flotation k / mineral / size

Process model & simulation Througput (t/h) Grade Recovery Operating cost

Scenarios

- •Production alternative
- •Metal prices
- •Consumable prices

Geometallurgical simulation

Geometallurgical simulation based on particles Total solids t/h

Production scenarios

Startegy B

Summary

- Geometallurgy
 - combines geological and metallurgical information in a model
 - lowers the technological risk
 - is executed through geometallurgical programs
- Current practices rely on quite small number of samples
- Geometallurgical tests are under development
- You should start geometallurgical program already when exploration project changes to mineral resource stage
- Take your geological and concentration model into mineral level

Acknowlegements

HIRC HJALMAR LUNDBOHM RESEARCH CENTRE A research centre sponsored by LKAB at the Luleå University of Technology in Sweden.

NordForsk

